精英家教网 > 高中数学 > 题目详情
12.命题“?x∈R,x2+2x+1≥0”的否定是(  )
A.?x∈R,x2+2x+1<0B.?x∉R,x2+2x+1<0C.?x∉R,x2+2x+1<0D.?x∈R,x2+2x+1<0

分析 直接利用全称命题的否定是特称命题写出结果即可.

解答 解:因为全称命题的否定是特称命题,所以命题“?x∈R,x2+2x+1≥0”的否定是:?x∈R,x2+2x+1<0.
故选:D.

点评 本题考查命题的否定,全称命题与特称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=(x-k)ex(k∈R).
(1)若k=0,求函数f(x)的极值;
(2)求函数g(x)在区间[0,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设A市120急救中心与B小区之间开120急救车所用时间为X分钟(单程),所用时间只与道路通畅状况有关,取容量为50的样本进行统计,如表:
X(分钟)25303540
频数6191510
(1)求X的分布列与数学期望;
(2)若A市120急救中心接到来自B小区的急救电话后准备接病人进行救护,若从小区接病人上急救车大约需要5分钟时间,求急救车从急救车中心出发接上病人返回到急救中心不超过75分钟的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.关于函数f(x)=2sin2x+2$\sqrt{3}$cos2x,下面结论正确的是(  )
A.在区间$[{\frac{π}{12},\frac{7π}{12}}]$单调递减B.在区间$[{\frac{π}{12},\frac{7π}{12}}]$单调递增
C.在区间$[{-\frac{π}{6},\frac{π}{3}}]$单调递减D.在区间$[{-\frac{π}{6},\frac{π}{3}}]$单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“a,b,c,d成等差数列”是“a+d=b+c”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)是奇函数,且x≥0时,f(x)=log2(x+2)+a,则f(-2)的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数y=kx的图象上存在点(x,y)满足约束条件$\left\{\begin{array}{l}{x+y-3≤0}\\{x-2y-3≤0}\\{x≥1}\end{array}\right.$,则实数k的最大值为(  )
A.$\frac{1}{2}$B.2C.$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,角A,B,C的对边分别为a,b,c,已知(sinA-sinB)(a+b)=$(\frac{1}{2}a-c)sinC$,则sinB=$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若复数z=$\frac{2-i}{1+i}$,则|z|=(  )
A.1B.$\sqrt{10}$C.$\frac{{\sqrt{10}}}{2}$D.3

查看答案和解析>>

同步练习册答案