精英家教网 > 高中数学 > 题目详情
16.已知曲线C的极坐标方程为ρ2+4ρcos(θ-$\frac{π}{6}}$)-5=0.
(1)将曲线C的极坐标方程化为直角坐标方程,并选择恰当的参数写出它的参数方程;
(2)若点P(x,y)在曲线C上,求使$\sqrt{3}$x-y+a≥0恒成立的实数a的取值范围.

分析 (1)利用两角差的余弦公式展开极坐标方程,再将直角坐标与极坐标的互化公式代入,化简可得结果,它的参数方程为$\left\{\begin{array}{l}{x=-\sqrt{3}+3cosθ}\\{y=-1+3sinθ}\end{array}\right.,θ为参数$,
(2)$\sqrt{3}$x-y+a≥0恒成立转化为a≥6cos(θ+$\frac{π}{6}$)-2,即可求出a的取值范围.

解答 解:(1)∵x=ρcosθ,y=ρsinθ,
∵ρ2+4ρcos(θ-$\frac{π}{6}}$)-5=0.
∴ρ2+4ρ($\frac{\sqrt{3}}{2}$cosθ+$\frac{1}{2}$sinθ)-5=0.
∴x2+y2+2$\sqrt{3}$x+2y-5=0,
∴(x+$\sqrt{3}$)2+(y+1)2=9,
参数方程为$\left\{\begin{array}{l}{x=-\sqrt{3}+3cosθ}\\{y=-1+3sinθ}\end{array}\right.,θ为参数$;
(2)∵$\sqrt{3}$x-y+a≥0恒成立,
∴$\sqrt{3}$(-$\sqrt{3}$+3cosθ)-(-1+3sinθ)+a≥0,
∴a≥6cos(θ+$\frac{π}{6}$)-2,
∵-1≤6cos(θ+$\frac{π}{6}$)≤1,
∴a≥6-2=4,
故a的取值范围为[4,+∞)

点评 本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.直角梯形ABCD中,AB∥DC,AB=3,DC=CB=2,DE⊥AB,垂足为E,若将三角形ADE沿DE向上折起,使得二面角A-DE-C为直二面角,则四棱锥A-BCDE的外接球的体积为$\frac{9}{2}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=2x2-3x+1,g(x)=k•sin(x-$\frac{π}{6}$)(k≠0).
(1)设f(x)的定义域为[0,3],值域为A; g(x)的定义域为[0,3],值域为B,且A⊆B,求实数k的取值范围.
(2)若方程f(sinx)+sinx-a=0在[0,2π)上恰有两个解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若x,y∈R,且x2+y2=4,那么x2-2$\sqrt{3}$xy-y2的最大值为(  )
A.2B.2$\sqrt{2}$C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若|z-3-4i|≤2,则|z|的最大值是(  )
A..   9B.7C.5D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知x,y满足约束条件$\left\{{\begin{array}{l}{x-2y≥0}\\{2x+2y-3≤0}\\{y≥\frac{1}{4}}\end{array}}\right.$,则z=2x-y的最大值为$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在等差数列{an}中,a1=$\frac{1}{3}$,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=4,q=b2S2
(I)求an与bn
(Ⅱ)设数列{cn}满足cn=an•bn,求{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数中,既是偶函数,又在(1,+∞)上单调递增的为(  )
A.y=ln(x2+1)B.y=cosxC.y=x-lnxD.y=($\frac{1}{2}$)|x|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设a=cos420°,函数f(x)=ax,则f(log2$\frac{1}{6}$)的值等于6.

查看答案和解析>>

同步练习册答案