分析 (1)利用两角差的余弦公式展开极坐标方程,再将直角坐标与极坐标的互化公式代入,化简可得结果,它的参数方程为$\left\{\begin{array}{l}{x=-\sqrt{3}+3cosθ}\\{y=-1+3sinθ}\end{array}\right.,θ为参数$,
(2)$\sqrt{3}$x-y+a≥0恒成立转化为a≥6cos(θ+$\frac{π}{6}$)-2,即可求出a的取值范围.
解答 解:(1)∵x=ρcosθ,y=ρsinθ,
∵ρ2+4ρcos(θ-$\frac{π}{6}}$)-5=0.
∴ρ2+4ρ($\frac{\sqrt{3}}{2}$cosθ+$\frac{1}{2}$sinθ)-5=0.
∴x2+y2+2$\sqrt{3}$x+2y-5=0,
∴(x+$\sqrt{3}$)2+(y+1)2=9,
参数方程为$\left\{\begin{array}{l}{x=-\sqrt{3}+3cosθ}\\{y=-1+3sinθ}\end{array}\right.,θ为参数$;
(2)∵$\sqrt{3}$x-y+a≥0恒成立,
∴$\sqrt{3}$(-$\sqrt{3}$+3cosθ)-(-1+3sinθ)+a≥0,
∴a≥6cos(θ+$\frac{π}{6}$)-2,
∵-1≤6cos(θ+$\frac{π}{6}$)≤1,
∴a≥6-2=4,
故a的取值范围为[4,+∞)
点评 本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=ln(x2+1) | B. | y=cosx | C. | y=x-lnx | D. | y=($\frac{1}{2}$)|x| |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com