精英家教网 > 高中数学 > 题目详情
1.已知函数$f(x)=\left\{{\begin{array}{l}{x(x+1),x≥0}\\{x(1-x),x<0}\end{array}}\right.$,则满足f(t-1)<f(2t)的实数t的取值范围是t>-1.

分析 画出函数$f(x)=\left\{{\begin{array}{l}{x(x+1),x≥0}\\{x(1-x),x<0}\end{array}}\right.$的图象,分析函数的单调性,结合f(t-1)<f(2t),可得实数t的取值范围.

解答 解:函数$f(x)=\left\{{\begin{array}{l}{x(x+1),x≥0}\\{x(1-x),x<0}\end{array}}\right.$的图象如下图所示:

由图可得:函数f(x)在定义域R上为增函数,
若f(t-1)<f(2t),则t-1<2t,
解得:t>-1,
故答案为:t>-1

点评 本题考查的知识点是分段函数的应用,函数单调性的性质,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.在数列11,111,1111,…中(  )
A.有完全平方数B.没有完全平方数C.没有偶数D.没有3的倍数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.根据统计,一名工人组装第x件产品所用的时间(单位:分钟)为f(x)=$\left\{\begin{array}{l}\frac{c}{{\sqrt{x}}},x<a\\ \frac{c}{{\sqrt{a}}},x≥a\end{array}$(a,c为常数).已知工人组装第4件产品用时30分钟,组装第a件产品用时5分钟,那么c和a的值分别是(  )
A.75,25B.75,16C.60,144D.60,16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设a=log0.60.8,b=log1.20.9,c=1.10.8,则a、b、c由小到大的顺序是b<a<c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知公比q≠1的正项等比数列{an},a3=1,函数f(x)=1+lnx,则f(a1)+f(a2)+…+f(a5)=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.甲、乙两篮球运动员上赛季每场比赛的得分如下:
甲:12,15,24,25,31,31,36,36,37,39,44,49,50
乙:8,13,14,16,23,26,28,33,38,39,51
用茎叶图将这些数据列出来,观察数据的分布情况,
(1)求运动员甲的众数和运动员乙的中位数
(2)比较这两位运动员得分水平
(3)哪位运动员发挥比较稳定?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将函数y=cosx的图象上的每个点的横坐标变为原来的2倍、纵坐标不变,再将所得图象向右平移$\frac{π}{3}$个单位,则最后得到的图象对应的函数解析式为(  )
A.$y=cos(2x-\frac{π}{3})$B.$y=cos(2x-\frac{2π}{3})$C.$y=cos(\frac{x}{2}-\frac{π}{3})$D.$y=cos(\frac{x}{2}-\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2-2x+a1nx.a∈R.
(1)若函数f(x)在点(1,f(1))处的切线与直线x+y-1=0平行,求实数a的值;
(2)求函数f(x)的单调区间;
(3)若a>0,函数g(x)=f(x)+2x+2a|lnx-1|,求函数g(x)在[$\frac{1}{e}$,+∞)上的最小值.(注:e是自然对数的底数.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设f(x)=$\left\{\begin{array}{l}{1+{e}^{-\frac{1}{(x-1)^{2}},}x≠1}\\{k,x=1}\end{array}\right.$,试确定k的值使f(x)在点x=1处连续.

查看答案和解析>>

同步练习册答案