精英家教网 > 高中数学 > 题目详情
15.设点A(-2,0)和B(0,3),在直线l:x-y+1=0上找一点P,使|PA|+|PB|的取值最小,则这个最小值为$\sqrt{17}$.

分析 求出点B关于直线l:x-y+1=0的对称点为C,连结AC,则AC交直线l于点P,点P即为所求的点,此时,|PA|+|PB|=|PA|+|PC|,(|PA|+|PB|)min=|AC|.

解答 解:设点B关于直线l:x-y+1=0的对称点为C(a,b),
则$\left\{\begin{array}{l}{\frac{0+a}{2}-\frac{3+b}{2}+1=0}\\{\frac{b-3}{a-0}=-1}\end{array}\right.$,解得a=2,b=1,∴C(2,1),
连结AC,则AC交直线l于点P,点P即为所求的点,
此时,|PA|+|PB|=|PA|+|PC|,
故(|PA|+|PB|)min=|AC|=$\sqrt{(2+2)^{2}+(1-0)^{2}}$=$\sqrt{17}$.
故答案为:$\sqrt{17}$.

点评 本题考查线段和的最小值的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若F1、F2是双曲线$\frac{x^2}{4}-{y^2}=1$的两个焦点,点P在双曲线上,且点P的横坐标为8,则△F1PF2的面积为5$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知双曲线的渐近线方程为$y=±\frac{1}{2}x$,且过点$(4,\sqrt{2})$,则此双曲线的方程为$\frac{{x}^{2}}{8}-\frac{{y}^{2}}{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1的左、右焦点分别为F1,F2,过F1且倾斜角为45°的直线l与椭圆相交于A,B两点.则AB的中点坐标(  )
A.(-$\frac{3}{5}$,$\frac{2}{5}$)B.(1,-1)C.(-1,$\frac{2}{5}$)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知全集U=R,集合A={x|-5<x<7},B={x|a+1<x<2a+15}.
(1)若a=0,求A∪B和∁UB;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$).
(I)求函数f(x)的单调递增区间;
(Ⅱ)求函数f(x)在区间[$\frac{π}{8},\frac{3π}{4}$]上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=3sin(-2x-$\frac{π}{6}$)的单调递增区间(  )
A.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z)B.[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$](k∈Z)
C.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)D.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.定义在R上的偶函数f(x),满足f(x+1)=-f(x),且f(x)在[-1,0]上是增函数,
①f(x)为周期函数;      
②f(x)的图象关于x=1对称;      
③f(x)在[0,1]上为增函数;
④f(x)在[1,2]上为减函数;   
⑤f(2)=f(0).
则上述说法正确的有①②⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(理科)如图,已知四棱锥P-ABCD的底面ABCD为菱形,且∠ABC=60°,AB=PC=2,PA=PB=$\sqrt{2}$,
(1)求证:平面PAB⊥平面ABCD;
(2)求二面角P-AC-B的余弦值.

查看答案和解析>>

同步练习册答案