精英家教网 > 高中数学 > 题目详情
函数y=2x+arcsinx的值域为
 
考点:函数的值域
专题:计算题,函数的性质及应用
分析:由题意,根据函数的单调性求函数的值域.
解答: 解:∵函数y=2x+arcsinx在[-1,1]上是增函数,
1
2
+arcsin(-1)≤2x+arcsinx≤2+arcsin1,
1-π
2
≤2x+arcsinx≤2+
π
2

故答案为:[
1-π
2
,2+
π
2
].
点评:本题考查了函数值域的求法.高中函数值域求法有:1、观察法,2、配方法,3、反函数法,4、判别式法;5、换元法,6、数形结合法,7、不等式法,8、分离常数法,9、单调性法,10、利用导数求函数的值域,11、最值法,12、构造法,13、比例法.要根据题意选择.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等轴双曲线经过点(2
3
,-4)
,则双曲线的实轴长为(  )
A、4
B、8
C、6
D、4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)的定义域为(0,+∞),且在(0,+∞)是递增的,f(
x
y
)=f(x)-f(y).
(1)求证:f(1)=0,f(xy)=f(x)+f(y);
(2)设f(2)=1,解不等式f(x)-f(
1
x-3
)≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两位同学参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取4次,绘制成茎叶图如图:
 
  977  
8128535
(Ⅰ)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;
(Ⅱ)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
x2-4
(x<-2)
(1)求f(x)的反函数f-1(x);
(2)设a1=1,
1
an+1
=-f-1(an)(n∈N*)
,求an
(3)若Sn=a12+a22+…+an2,bn=Sn+1-Sn,是否存在最小正整数m使得对任意n∈N*,都有bn
m
25
成立?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了得到y=3sin(2x+
π
4
)的图象,只需把y=3sin(2x-
π
6
)图象上所有的点(  )
A、向右平移
12
个单位
B、向左平移
24
个单位
C、向左平移
12
个单位
D、向右平移
24
个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=cos(ωx+
π
3
)(x∈R,ω>0)的最小正周期为π,为了得到f(x)的图象,只需将函数g(x)=sin(ωx+
π
3
)的图象(  )
A、向左平移
π
2
个单位长度
B、向右平移
π
2
个单位长度
C、向左平移
π
4
个单位长度
D、向右平移
π
4
个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

设点P的坐标为(x0,y0),直线l的方程为Ax+By+C=0.请写出点P到直线l的距离,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=2tanx-
2sin2
x
2
-1
sin
x
2
cos
x
2
,则f(-
π
12
)的值为(  )
A、-8
B、8
C、4
3
D、-4
3

查看答案和解析>>

同步练习册答案