分析 (1)由题意知X~B(3,$\frac{3}{4}$),由此能求出X的分布列及期望.
(2)利用对立事件概率计算公式能求出至少一人拨通电话的概率.
解答 解:(1)由题意知,
用X表示成功咨询的人数,则X服从X~B(3,$\frac{3}{4}$),
∴P(X=0)=${C}_{3}^{0}(\frac{1}{4})^{3}$=$\frac{1}{64}$,
P(X=1)=${C}_{3}^{1}(\frac{3}{4})(\frac{1}{4})^{2}$=$\frac{9}{64}$,
P(X=2)=${C}_{4}^{2}(\frac{3}{4})^{2}(\frac{1}{4})$=$\frac{27}{64}$,
P(X=3)=${C}_{3}^{3}(\frac{3}{4})^{3}$=$\frac{27}{64}$,
所以X的分布列为:
| X | 0 | 1 | 2 | 3 |
| P | $\frac{1}{64}$ | $\frac{9}{64}$ | $\frac{27}{64}$ | $\frac{27}{64}$ |
点评 本题考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意二项分布的性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 48 | B. | 60 | C. | 84 | D. | 96 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 13.1m/s | B. | -13.1m/s | C. | -26.1m/s | D. | 26.1m/s |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{(n+1)(n+2)}{2}$ | B. | $\frac{n(n+1)}{2}$ | C. | $\frac{n}{n+1}$ | D. | $\frac{n}{n+2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com