精英家教网 > 高中数学 > 题目详情
10.某中学生心理咨询中心服务电话接通率为$\frac{3}{4}$,某班3名同学商定明天分别就同一问题询问该服务中心,且每人只拨打一次,
求(1)他们中成功咨询的人数为X的分布列及期望;
(2)至少一人拨通电话的概率.

分析 (1)由题意知X~B(3,$\frac{3}{4}$),由此能求出X的分布列及期望.
(2)利用对立事件概率计算公式能求出至少一人拨通电话的概率.

解答 解:(1)由题意知,
用X表示成功咨询的人数,则X服从X~B(3,$\frac{3}{4}$),
∴P(X=0)=${C}_{3}^{0}(\frac{1}{4})^{3}$=$\frac{1}{64}$,
P(X=1)=${C}_{3}^{1}(\frac{3}{4})(\frac{1}{4})^{2}$=$\frac{9}{64}$,
P(X=2)=${C}_{4}^{2}(\frac{3}{4})^{2}(\frac{1}{4})$=$\frac{27}{64}$,
P(X=3)=${C}_{3}^{3}(\frac{3}{4})^{3}$=$\frac{27}{64}$,
所以X的分布列为:

X0123
P$\frac{1}{64}$$\frac{9}{64}$$\frac{27}{64}$$\frac{27}{64}$
E(X)=3×$\frac{3}{4}$=$\frac{9}{4}$.(8分)       
(2)至少一人拨通电话的概率:
P=1-$\frac{1}{64}$=$\frac{63}{64}$.(12分)

点评 本题考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意二项分布的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx+$\frac{1-x}{ax}$,其中a为大于零的常数.
(1)若f(x)在区间[1,+∞)内单调递增,求a的取值范围;
(2)求f(x)在区间[1,2]上的最大值;
(3)求证:对于任意的n∈N*,且n>1时,都有n-lnn<1+$\frac{1}{2}$+$\frac{2}{3}$+$\frac{3}{4}$+…+$\frac{n-1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,一环形花坛成A,B,C,D四块,现有4种不同的花供选择,要求在每块地里种一种花,且相邻的两块种不同的花,则不同的种法总数为(  )
A.48B.60C.84D.96

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在高台跳水中,t s时运动员相对水面的高度(单位:m)是h(t)=-4.9t2+6.5t+10,则t=2s时的速度是(  )
A.13.1m/sB.-13.1m/sC.-26.1m/sD.26.1m/s

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知an为(1+x)n+2的展开式中含xn项的系数,则数列{$\frac{1}{{a}_{n}}$}的前n项和为(  )
A.$\frac{(n+1)(n+2)}{2}$B.$\frac{n(n+1)}{2}$C.$\frac{n}{n+1}$D.$\frac{n}{n+2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,b=2,a=4,C=45°,则△ABC的面积S=(  )
A.$2\sqrt{3}$B.2C.4D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知圆O:x2+y2=2,若|$\overrightarrow{OC}$|=1,在圆O上存在A,B两点,有$\overline{CA}$•$\overrightarrow{CB}$=0成立,则|$\overrightarrow{AB}$|的取值范围是[$\sqrt{3}-1$,$\sqrt{3}+1$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}中,a1=1,当n≥2且n∈N*时S${\;}_{n}^{2}$=an(Sn-$\frac{1}{2}$),求证:{$\frac{1}{{S}_{n}}$}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)解不等式g(x)≥f(x)-|x-1|;
(Ⅲ)若方程g(x)-λf(x)+1=0在(-1,1)上有且只有一个实根,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案