精英家教网 > 高中数学 > 题目详情
19.已知数列{an}中,a1=1,当n≥2且n∈N*时S${\;}_{n}^{2}$=an(Sn-$\frac{1}{2}$),求证:{$\frac{1}{{S}_{n}}$}是等差数列.

分析 把“当n≥2时an=Sn-Sn-1”代入${{S}_{n}}^{2}$=an(Sn-$\frac{1}{2}$)化简,由等差数列的定义即可证明数列{$\frac{1}{{S}_{n}}$}是等差数列.

解答 证明:∵当n≥2时an=Sn-Sn-1,且${{S}_{n}}^{2}$=an(Sn-$\frac{1}{2}$),
∴${{S}_{n}}^{2}$=(Sn-Sn-1)(Sn-$\frac{1}{2}$ ),
则${{S}_{n}}^{2}$=${{S}_{n}}^{2}$-$\frac{1}{2}$Sn-SnSn-1+$\frac{1}{2}$Sn-1
即Sn-1-Sn=2SnSn-1
两边同除以SnSn-1 得,$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n-1}}$=2,
又a1=1,则$\frac{1}{{S}_{1}}$=1,
∴数列{$\frac{1}{{S}_{n}}$}是以1为首项、以2为公差的等差数列.

点评 本题考查了数列的前n项和与通项的关系,利用等差数列的定义确定等差关系,考查化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=cosx,x∈($\frac{π}{2}$,3π),若方程f(x)=m有三个从小到大排列的根x1,x2,x3,且x22=x1x3,则m的值为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某中学生心理咨询中心服务电话接通率为$\frac{3}{4}$,某班3名同学商定明天分别就同一问题询问该服务中心,且每人只拨打一次,
求(1)他们中成功咨询的人数为X的分布列及期望;
(2)至少一人拨通电话的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设n?N+,则5${C}_{n}^{1}$+52${C}_{n}^{2}$+53${C}_{n}^{3}$+…+5n${C}_{n}^{n}$除以7的余数为(  )
A.0或5B.1或3C.4或6D.0或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知:ω 2+ω+1=0,则ω2016的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C的中心为原点,焦点在x轴上,离心率为$\frac{1}{2}$,两个焦点分别为F1,F2,点P为椭圆C上一点,△F1PF2的周长为12.
(1)求椭圆C的方程;
(2)过F1的直线l与椭圆C交点M,N,若|$\overrightarrow{MN}$|=$\frac{48}{7}$,求△MNF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线C:y2=2px(p>0),抛物线的焦点为F,过点F的直线交C于A,B两点,线段AB的垂直平分线交x轴于点R.
(I)若对数函数y=lgx图象经过点F,求抛物线C方程;
(II)$\frac{|AB|}{|BF|}$恒为定值吗?如果是,求出该值,如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=log3x+$\frac{1}{{{{log}_3}x}}$-1的值域是(  )
A.(-∞,-3)∪(1,+∞)B.(-∞,-3]∪[1,+∞)C.[1,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为F1,F2,且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=10,椭圆与双曲线的离心率分别为e1,e2,则e1e2+1的取值范围是($\frac{4}{3}$,+∞).

查看答案和解析>>

同步练习册答案