【题目】已知椭圆:的离心率,左、右焦点分别为、,抛物线的焦点恰好是该椭圆的一个顶点.
(1)求椭圆的方程;
(2)已知直线:与圆:相切,且直线与椭圆相交于、两点,求的值.
科目:高中数学 来源: 题型:
【题目】某市房产中心数据研究显示,2018年该市新建住宅销售均价如下表.3月至7月房价上涨过快,为抑制房价过快上涨,政府从8月份开始出台了相关限购政策,10月份开始房价得到了很好的抑制.
均价(万元/) | 0.95 | 0.98 | 1.11 | 1.12 | 1.20 | 1.22 | 1.32 | 1.34 | 1.16 | 1.06 |
月份 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
(Ⅰ)请建立3月至7月线性回归模型(保留小数点后3位),并预测若政府不宏观调控,12月份该市新建住宅销售均价;
(Ⅱ)试用相关系数说明3月至7月各月均价(万元/)与月份之间可用线性回归模型(保留小数点后2位)
参考数据:,,,,
回归方程斜率和截距最小二乘法估计公式;
相关系数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的参数方程为(为参数),直线经过点且倾斜角为.
(1)求曲线的极坐标方程和直线的参数方程;
(2)已知直线与曲线交于,满足为的中点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,点,点,动圆与轴相切于点,过点的直线与圆相切于点,过点的直线与圆相切于点(均不同于点),且与交于点,设点的轨迹为曲线.
(1)证明:为定值,并求的方程;
(2)设直线与的另一个交点为,直线与交于两点,当三点共线时,求四边形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图两个同心球,球心均为点,其中大球与小球的表面积之比为3:1,线段与是夹在两个球体之间的内弦,其中两点在小球上,两点在大球上,两内弦均不穿过小球内部.当四面体的体积达到最大值时,此时异面直线与的夹角为,则( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com