精英家教网 > 高中数学 > 题目详情
如图,假设两圆O1和O2交于A、B,⊙O1的弦BC交⊙O2于E,⊙O2的弦BD交⊙O1于F,证明:
(1)若∠DBA=∠CBA,则DF=CE; 
(2)若DF=CE,则∠DBA=∠CBA.
考点:与圆有关的比例线段
专题:计算题,立体几何
分析:连接AC,AD,AE,AF,利用圆内接四边形,证明∠DAF=∠CAF
(1)证明△ADF≌△AEC,可得DF=CE; 
(2)证明△ADF≌△AEC,可得AD=AE,即可证明∠DBA=∠CBA.
解答: 证明:连接AC,AD,AE,AF,则
∵ADEB是圆内接四边形,
∴∠AEC=∠D,
同理∠C=∠AFD,
从而∠DAF=∠CAF
(1)∵∠DBA=∠CBA,
∴AD=AE,AF=AC,
∴△ADF≌△AEC,
∴DF=CE; 
(2)∵DF=CE,
∴△ADF≌△AEC,
∴AD=AE,
∴∠DBA=∠CBA.
点评:本题考查圆内接四边形的性质,考查三角形全等的证明,正确运用圆内接四边形的性质是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义:称
n
p1+p2+…+pn
为n个正数p1,p2,…,pn的“均倒数”,若数列{an}的前n项的“均倒数”为
1
2n-1
,则数列{an}的通项公式为(  )
A、2n-1B、4n-3
C、4n-1D、4n-5

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆Γ1的中心和抛物线Γ2的顶点均为原点O,Γ1、Γ2的焦点均在x轴上,过Γ2的焦点F作直线l,与Γ2交于A、B两点,在Γ1、Γ2上各取两个点,将其坐标记录于下表中:
x3-24
3
y-2
3
0-4-
3
2

(1)求Γ1,Γ2的标准方程;
(2)若l与Γ1交于C、D两点,F0为Γ1的左焦点,求
SF0AB
SF0CD
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:集合{x|1<x<2}是集合{x|x>a}的子集;命题q:函数y=log7-3ax在(0,+∞)上是增函数,若p∨q为真命题,p∧q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)解不等式:x2+(a-1)x-a≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

正项等比数列{an}的前n项和为Sn,a4=16,且a2,a3的等差中项为S2
(1)求数列{an}的通项公式;
(2)设bn=
n
a2n-1
,数列{bn}的前n项和为Tn,求证:Tn
8
9

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和为Sn(n∈N*),若
S6
S3
=3,则
S9
S6
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知:a,b,x均是正数,且a<b,求证:
a+x
b+x
a
b

(2)a,b,c是△ABC三边,证明:
a
b+c
+
b
a+c
+
c
a+b
<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

A(5,-5,-6)、B(10,8,5)两点的距离等于
 

查看答案和解析>>

同步练习册答案