精英家教网 > 高中数学 > 题目详情
设等比数列{an}的前n项和为Sn(n∈N*),若
S6
S3
=3,则
S9
S6
=
 
考点:等比数列的性质
专题:计算题,等差数列与等比数列
分析:根据等比数列的性质得到Sn,S2n-Sn,S3n-S2n成等比列出关系式,又S6:S3=3,表示出S3,代入到列出的关系式中即可求出S9:S6的值.
解答: 解:因为等比数列{an}的前n项和为Sn,则Sn,S2n-Sn,S3n-S2n成等比,(Sn≠0)
所以
S6-S3
S3
=
S9-S6
S6-S

S6
S3
=3,即S3=
1
3
S6
所以
S6-
1
3
S6
1
3
S6
=
S9-S6
S6-
1
3
S6

整理得
S9
S6
=
7
3

故答案为:
7
3
点评:此题考查学生灵活运用等比数列的性质化简求值,是一道基础题.解本题的关键是根据等比数列的性质得到Sn,S2n-Sn,S3n-S2n成等比.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知OPQ是半径为1,圆心角为2θ(θ为定值)的扇形,A是扇形弧上的动点,四边形ABCD是扇形内的内接矩形,记∠AOP=α(0<α<θ).
(1)用α表示矩形ABCD的面积S;
(2)若θ=
π
6
,求当α取何值时,矩形面积S最大?并求出这个最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断函数f(x)=
1-x2
+
x2-1
的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,假设两圆O1和O2交于A、B,⊙O1的弦BC交⊙O2于E,⊙O2的弦BD交⊙O1于F,证明:
(1)若∠DBA=∠CBA,则DF=CE; 
(2)若DF=CE,则∠DBA=∠CBA.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|1≤x≤2},B={x|x2-3x+a≤0},若B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD中点,M是棱PC上的点,PD=PA=2,BC=
1
2
AD=1,CD=
3

(1)若点M是棱PC的中点,求证:PA∥平面BMQ;
(2)求证:平面PQB⊥底面PAD;
(3)若二面角M-BQ-C大小为θ,且θ∈[
π
6
π
3
],若
PM
=t
MC
,试确定t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的内角A、B、C的对边分别为a、b、c,已知a=
3
,b=
2
,B=45°,
(Ⅰ)求角A、C;
(Ⅱ)求边c.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,sinBcosC+sinCcosB=2sinAcosB,求sinA+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+loga(x+1)(a>0,且a≠1)在区间[0,1]上的最大值与最小值的和为a,则实数a=
 

查看答案和解析>>

同步练习册答案