分析 (1)由2a1=(2-1)22+1+2=6,解得a1=3,同时2nan=(2n-1)2n+1+2-[(2n-3)2n+2]=(4n-2-2n+3)2n,即an=2n+1;
(2)${{a}_{n}}^{2}$=(2n+1)(2n+1)=4n2+4n+1>4n2+4n,所以$\frac{1}{{{a}_{n}}^{2}}$<$\frac{1}{4{n}^{2}+4n}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,从而$\frac{1}{{{a}_{1}}^{2}}$+$\frac{1}{{{a}_{2}}^{2}}$+…+$\frac{1}{{{a}_{n}}^{2}}$<$\frac{1}{4}(1-\frac{1}{2})$+$\frac{1}{4}(\frac{1}{2}-\frac{1}{3})$+…+$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$<$\frac{1}{4}$.
解答 (1)解:根据题意,得2a1=(2-1)22+1+2=6,解得a1=3,
∵2a1+22a2+…+2n-1an-1=(2n-3)2n+2,
∴2nan=(2n-1)2n+1+2-[(2n-3)2n+2]
=(2n-1)2n+1-(2n-3)2n
=(4n-2-2n+3)2n,
即an=2n+1;
(2)证明:由(1)知${{a}_{n}}^{2}$=(2n+1)(2n+1),
又(2n+1)(2n+1)=4n2+4n+1>4n2+4n,
所以$\frac{1}{{{a}_{n}}^{2}}$<$\frac{1}{4{n}^{2}+4n}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,
从而$\frac{1}{{{a}_{1}}^{2}}$+$\frac{1}{{{a}_{2}}^{2}}$+…+$\frac{1}{{{a}_{n}}^{2}}$<$\frac{1}{4}(1-\frac{1}{2})$+$\frac{1}{4}(\frac{1}{2}-\frac{1}{3})$+…+$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$
=$\frac{1}{4}(1-\frac{1}{n+1})$<$\frac{1}{4}$.
点评 本题考查了递推式的应用、“裂项求和”,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{20}{21}$ | B. | $\frac{18}{19}$ | C. | $\frac{10}{21}$ | D. | $\frac{9}{19}$ |
查看答案和解析>>
科目:高中数学 来源:2017届云南曲靖市高三上半月考一数学试卷(解析版) 题型:选择题
如图是函数
的导函数
的图象,则下面判断正确的是( )
![]()
A.在区间
上
是增函数 B.当
时,
取极大值
C.在
上
是减函数 D.在
上
是增函数
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com