精英家教网 > 高中数学 > 题目详情
17.已知集合A={x|x≤-1或x≥1},B={x|a<x<a+1},且A∩B=B,则实数a的取值范围是(  )
A.a≤-2B.a≥1C.-2≤a≤1D.a≤-2或a≥1

分析 根据A与B的交集为B,得到B为A的子集,即可确定出a的范围.

解答 解:∵A∩B=B,
∴B⊆A,
∵A={x|x≤-1或x≥1},B={x|a<x<a+1},
∴a+1≤-1或a≥1,
解得a≤-2或a≥1,
故选:D.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设变量x,y满足约束条件$\left\{\begin{array}{l}x-y+2≥0\\ 2x-5y+10≤0\\ x+y-4≤0\end{array}\right.$则目标函数z=3x-4y的最大值为(  )
A.-8B.-6C.-9D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知m,n是两条不同的直线,α,β是两个不同的平面,下列命题不正确的是(  )
A.若 m∥n,m⊥α,则 n⊥αB.若m∥α,α∩β=n则 m∥n
C.若m⊥β,m⊥α,则α∥βD.m⊥α,m?β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在边长为1的菱形ABCD中,∠ABC=60°,把菱形沿对角线AC折起,使折起后BD=$\frac{\sqrt{3}}{2}$,则二面角B-AC-D的余弦值为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2\sqrt{2}}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知R上的函数,$f(x)=\left\{\begin{array}{l}{log_2}^{(3-x)}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(x≤0)\\ f(x-1)-f(x-2)\;(x>0)\end{array}\right.$,则f(2017)=log23-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.${(x+\frac{a}{x})^n}$(n,a∈N*,且n>a)的展开式中,首末两项的系数之和为65,则展开式的中间项为160.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{56}{3}$B.$\frac{112}{3}$C.$\frac{119}{3}$D.$\frac{128}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.向量(3,4)在向量(1,-2)上的投影为-$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知不等式|x-3|+|x+2|≤|a+1|.
(1)当a=-8时,解不等式;
(2)若不等式有解,求a的取值范围.

查看答案和解析>>

同步练习册答案