| A. | $-\frac{1}{2}$ | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
分析 先根据f(8)=f(2×4)=f(2)+f(4)=f(2)+f(2)+f(2)=3f(2),求得f(2),再根据f($\sqrt{2}$)=$\frac{1}{2}$f(2),求得f($\sqrt{2}$).
解答 解:因为f(x)满足,f(xy)=f(x)+f(y),
所以,f(8)=f(2×4)=f(2)+f(4)=f(2)+f(2)+f(2),
即f(8)=3f(2)=3,
所以,f(2)=1,
而f(2)=f($\sqrt{2}$•$\sqrt{2}$)=f($\sqrt{2}$)+f($\sqrt{2}$)=2f($\sqrt{2}$)
因此,f($\sqrt{2}$)=$\frac{1}{2}$f(2)=$\frac{1}{2}$,
故答案为:C.
点评 本题主要考查了抽象函数及其应用,涉及抽象函数值的确定,关键是要灵活运用条件f(xy)=f(x)+f(y),属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{2}或\sqrt{3}$ | B. | $\frac{{\sqrt{3}}}{4}或\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{3}}}{4}或\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=ax和y=loga(-x) | B. | y=ax和$y={log_a}{x^{-1}}$ | ||
| C. | y=a-x和$y={log_a}{x^{-1}}$ | D. | y=a-x和y=loga(-x) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com