精英家教网 > 高中数学 > 题目详情
如图,线段的两个端点分别分别在轴、轴上滑动,,点上一点,且,点随线段的运动而变化.

(1)求点的轨迹方程;
(2)设为点的轨迹的左焦点,为右焦点,过的直线交的轨迹于两点,求的最大值,并求此时直线的方程.
(1)  (2) PQ的方程为

试题分析:解:(1)由题可知点,且可设A(,0),M(),B(0,),
则可得
,即,∴,这就是点M的轨迹方程。
(2)由(1)知为(,0),为(,0),
由题设PQ为,由 有,设
恒成立,
==
=== 
),则=,当且仅当,即时取“=”∴的最大值为6,此时PQ的方程为
点评:解决的关键是利用向量的关系式来求解坐标关系,得到轨迹方程,同时能结合韦达定理来得到根与系数的关系来求解,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知两定点,,动点满足,由点轴作垂线段,垂足为,点满足,点的轨迹为.
(1)求曲线的方程;
(2)过点作直线与曲线交于,两点,点满足为原点),求四边形面积的最大值,并求此时的直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,有一条长度为1的线段EF,其端点E、F分别在边长为3的正方形ABCD的四边上滑动,当F沿正方形的四边滑动一周时,EF的中点M所形成的轨迹长度最接近于(  )
A.8B.11
C.12D.10

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直接坐标系xOy中,直线L的方程为x-y+4=0,曲线C的参数方程为.
(1)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线L的位置关系;
(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以抛物线的焦点为圆心,且过坐标原点的圆的方程为(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直角坐标系中,一直角三角形,B、D在轴上且关于原点对称,在边上,BD=3DC,△ABC的周长为12.若一双曲线以B、C为焦点,且经过A、D两点.

⑴ 求双曲线的方程;
⑵ 若一过点为非零常数)的直线与双曲线相交于不同于双曲线顶点的两点,且,问在轴上是否存在定点,使?若存在,求出所有这样定点的坐标;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平面直角坐标系中,双曲线中心在原点,焦点在轴上,一条渐近线方程为
则它的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆上的一点P,到椭圆一个焦点的距离为3,则P到另一焦点距离为(    )
A.2B.3C.5D.7

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

短轴长为,离心率e=的椭圆的两焦点为F1、F2,过F1作直线交椭圆于A、B两点,则△ABF2周长为_____________。

查看答案和解析>>

同步练习册答案