科目:高中数学 来源: 题型:解答题
(本题12分)如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=|PD|.
(Ⅰ)当P在圆上运动时,求点M的轨迹C的方程;
(Ⅱ)求过点(3,0)且斜率为的直线被曲线C所截线段的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题共9分)如图,在△ACB中,∠ACB = 90°,AC = 4,BC = 2,点P为线段CA(不包括端点)上的一个动点,以为圆心,1为半径作.
(1)连结,若,试判断与直线AB的位置关系,并说明理由;
(2)当线段PC等于多少时,与直线AB相切?
(3)当与直线AB相交时,写出线段PC的取值范围。
(第(3)问直接给出结果,不需要解题过程)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆C:x2+y2=r2(r>0)经过点(1,).
(1)求圆C的方程;
(2)是否存在经过点(-1,1)的直线l,它与圆C相交于A,B两个不同点,且满足=+(O为坐标原点)关系的点M也在圆C上?如果存在,求出直线l的方程;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
已知F2、F1是双曲线-=1(a>0,b>0)的上、下焦点,点F2关于渐近线的对称点恰好
落在以F1为圆心,|OF1|为半径的圆上,则双曲线的离心率为( )
A.3 | B. | C.2 | D. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com