(本小题满分13分)
已知
为平面直角坐标系的原点,过点
的直线
与圆
交于
,
两点.
(I)若
,求直线
的方程;
(Ⅱ)若
与
的面积相等,求直线
的斜率.
科目:高中数学 来源: 题型:解答题
(本题满分10分)
在极坐标系中,已知两点O(0,0),B(2
,
).![]()
(1)求以OB为直径的圆C的极坐标方程,然后化成直角方程;
(2)以极点O为坐标原点,极轴为
轴的正半轴建立平面直角坐标系,直线l的参数方程为
(t为参数).若直线l与圆C相交于M,N两点,圆C的圆心为C,求DMNC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知平面直角坐标系
中O是坐标原点,
,圆
是
的外接圆,过点(2,6)的直线为
。
(1)求圆
的方程;
(2)若
与圆相切,求切线方程;
(3)若
被圆所截得的弦长为
,求直线
的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)在平面直角坐标系
中,
是抛物线![]()
的焦点,
是抛物线
上位于第一象限内的任意一点,过
三点的圆的圆心为
,点
到抛物线
的准线的距离为
.(Ⅰ)求抛物线
的方程;(Ⅱ)是否存在点
,使得直线
与抛物线
相切于点
若存在,求出点
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)
已知直线![]()
,圆
.
(Ⅰ)证明:对任意
,直线
与圆
恒有两个公共点.
(Ⅱ)过圆心
作
于点
,当
变化时,求点
的轨迹
的方程.
(Ⅲ)直线
与点
的轨迹
交于点
,与圆
交于点
,是否存在
的值,使得
?若存在,试求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆C:
.
(1)若圆C的切线在x轴和y轴上的截距相等,且截距不为零,求此切线的方程;
(2)从圆C外一点P
向该圆引一条切线,切点为M,O为坐标原点,且有
,
求使得
取得最小值的点P的坐标
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知⊙C:x2+y2-2x-2y+1=0,直线l与⊙C相切且分别交x轴、y轴正向于A、B两点,O为坐标原点,且
=a,
=b(a>2,b>2).
(Ⅰ)求线段AB中点的轨迹方程.
(Ⅱ)求△ABC面积的极小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com