【题目】已知四棱锥的底面为正方形, 上面且. 为的中点.
(1)求证: 面;
(2)求直线与平面所成角的余弦值.
科目:高中数学 来源: 题型:
【题目】在四棱锥中,底面是矩形,侧棱底面, 分别是的中点, , .
(Ⅰ)求证: 平面;
(Ⅱ)求与平面所成角的正弦值;
(Ⅲ)在棱上是否存在一点,使得平面平面?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)和y=g(x)在[-2,2]上的图象如图所示.给出下列四个命题:
①方程f[g(x)]=0有且仅有6个根;②方程g[f(x)]=0有且仅有3个根;
③方程f[f(x)]=0有且仅有7个根;④方程g[g(x)]=0有且仅有4个根.
其中正确命题的序号为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列满足,其中,且, 为常数.
(1)若是等差数列,且公差,求的值;
(2)若,且存在,使得对任意的都成立,求的最小值;
(3)若,且数列不是常数列,如果存在正整数,使得对任意的均成立. 求所有满足条件的数列中的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的内角A, B, C的对边分别为a, b, c,且.
(Ⅰ)求角C的大小;
(Ⅱ)设角A的平分线交BC于D,且AD=,若b=,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,点,圆,以动点为圆心的圆经过点,且圆与圆内切.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)若直线过点,且与曲线交于两点,则在轴上是否存在一点,使得轴平分?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,平面平面,且,.四边形满足,,.为侧棱的中点,为侧棱上的任意一点.
(1)若为的中点,求证: 面平面;
(2)是否存在点,使得直线与平面垂直? 若存在,写出证明过程并求出线段的长;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com