7£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±Ïßµã²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-1-tcos¦Á\\ y=tsin¦Á\end{array}\right.£¨t$Ϊ²ÎÊý$¦Á¡Ê£¨0£¬\frac{¦Ð}{2}£©$£©ÒÔÔ­µãOΪ¼«µã£¬xÖá·Ç¸º°ëÖáΪ¼«ÖὨÁ¢×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=4cos¦È£®
£¨1£©ÈôÖ±ÏßlÓëÇúÏßCÓÐÇÒÒ»¸ö¹«¹²µãM£¬ÇóµãMµÄÖ±½Ç×ø±ê£»
£¨2£©ÈôÖ±ÏßlÓëÇúÏßCÏཻÓÚA¡¢BÁ½µã£¬Ïß¶ÎABµÄÖеãºá×ø±êΪ$\frac{1}{2}$£¬ÇóÖ±ÏßlµÄÆÕͨ·½³Ì£®

·ÖÎö £¨1£©ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=4cos¦È£¬¼´¦Ñ2=4¦Ñcos¦È£¬°Ñ¦Ñ2=x2+y2£¬x=¦Ñcos¦È£¬´úÈë¿ÉµÃCµÄÖ±½Ç×ø±ê·½³Ì£®°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì´úÈëÉÏʽ²¢ÕûÀíµÃt2+6tcos¦Á+5=0£®Áî¡÷=0£¬½â³ö¼´¿ÉµÃ³öµãMµÄÖ±½Ç×ø±ê£®
£¨2£©ÉèA£¬BÁ½µã¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬Ôòt1+t2=-6cos¦Á£®ÀûÓÃÖеã×ø±ê¹«Ê½¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=4cos¦È£¬¼´¦Ñ2=4¦Ñcos¦È£¬°Ñ¦Ñ2=x2+y2£¬x=¦Ñcos¦È£¬´úÈë¿ÉµÃCµÄÖ±½Ç×ø±ê·½³ÌΪ£ºx2-4x+y2=0£¬¼´£¨x-2£©2+y2=4£®
°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}x=-1-tcos¦Á\\ y=tsin¦Á\end{array}\right.£¨t$Ϊ²ÎÊý$¦Á¡Ê£¨0£¬\frac{¦Ð}{2}£©$£©´úÈëÉÏʽ²¢ÕûÀíµÃt2+6tcos¦Á+5=0£®
Áî¡÷=£¨6cos¦Á£©2-20=0£¬½âµÃcos¦Á=$\frac{\sqrt{5}}{3}$£¬sin¦Á=$\frac{2}{3}$£¬t=-$\sqrt{5}$£®
¡àµãMµÄÖ±½Ç×ø±êΪ£¨$\frac{2}{3}$£¬-$\frac{2\sqrt{5}}{3}$£©£®
£¨2£©ÉèA£¬BÁ½µã¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬Ôòt1+t2=-6cos¦Á£®
Ïß¶ÎABµÄÖеã¶ÔÓ¦µÄ²ÎÊýΪ$\frac{1}{2}$£¨t1+t2£©=-3cos¦Á£®
Ôò-1+3cos2¦Á=$\frac{1}{2}$£¬½âµÃcos¦Á=$\frac{\sqrt{2}}{2}$£¬¦Á=$\frac{¦Ð}{4}$£®
¡àÖ±ÏßlµÄÆÕͨ·½³ÌΪx-y+1=0£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Öеã×ø±ê¹«Ê½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=x2£¨x-3£©£¬Ôòf£¨x£©ÔÚRÉϵĵ¥µ÷µÝ¼õÇø¼äÊÇ[0£¬2]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªµÈ²îÊýÁÐ{an}ÖУ¬ÇÒa3=-1£¬a6=-7£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©ÈôÊýÁÐ{an}ǰnÏîºÍSn=-21£¬nµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®µãP£¨x£¬y£©ÊÇÍÖÔ²$\frac{x^2}{6}+\frac{y^2}{4}=1$ÉϵÄÒ»¸ö¶¯µã£¬Ôòx+2yµÄ×î´óֵΪ$\sqrt{22}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖª$sin£¨-¦Á£©=\frac{{\sqrt{5}}}{3}$£¬Ôò$cos£¨\frac{¦Ð}{2}+¦Á£©$µÄֵΪ£¨¡¡¡¡£©
A£®$\frac{2}{3}$B£®$-\frac{2}{3}$C£®$\frac{{\sqrt{5}}}{3}$D£®$-\frac{{\sqrt{5}}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êý$f£¨x£©=\frac{1}{2}{x^2}-3x+£¨a-1£©lnx$£¬g£¨x£©=ax£¬h£¨x£©=f£¨x£©-g£¨x£©+3x£¬ÆäÖÐa¡ÊRÇÒa£¾1£®
£¨1£©µ±a=3ʱ£¬Çóº¯Êýh£¨x£©µÄµ¥µ÷Çø¼ä¼°¼«Öµ£»
£¨2£©Èô¶ÔÈÎÒâµÄx1£¬x2¡Ê£¨0£¬+¡Þ£©£¬x1¡Ùx2£¬º¯Êýh£¨x£©Âú×ã$\frac{{h£¨{x_1}£©-h£¨{x_2}£©}}{{{x_1}-{x_2}}}£¾-1$£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Ä³Êеç×ÓÈÏÖ¤Éó²éÁ÷³ÌͼÈçͼ£º

ÔòÓм¸´¦Éó²é¿ÉÄܲ»±»Í¨¹ýµÄ»·½Ú£¨¡¡¡¡£©
A£®1B£®2C£®3D£®0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖª$\vec a=£¨2£¬3£©£¬\vec b=£¨x£¬-6£©$£¬Èô$2\vec a¡Î\vec b$£¬ÔòxµÄֵΪ£¨¡¡¡¡£©
A£®9B£®-9C£®4D£®-4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªnΪÕýÕûÊý£¬ÊýÁÐ{an}Âú×ãan£¾0£¬$4£¨{n+1}£©{a_n}^2-n{a_{n+1}}^2=0$£¬ÉèÊýÁÐ{bn}Âú×ã${b_n}=\frac{{{a_n}^2}}{t^n}$
£¨1£©ÇóÖ¤£ºÊýÁÐ$\left\{{\frac{a_n}{{\sqrt{n}}}}\right\}$ΪµÈ±ÈÊýÁУ»
£¨2£©ÈôÊýÁÐ{bn}ÊǵȲîÊýÁУ¬ÇóʵÊýtµÄÖµ£»
£¨3£©ÈôÊýÁÐ{bn}ÊǵȲîÊýÁУ¬Ç°nÏîºÍΪSn£¬¶ÔÈÎÒâµÄn¡ÊN*£¬¾ù´æÔÚm¡ÊN*£¬Ê¹µÃ8a12Sn-a14n2=16bm³ÉÁ¢£¬ÇóÂú×ãÌõ¼þµÄËùÓÐÕûÊýa1µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸