精英家教网 > 高中数学 > 题目详情

【题目】如图所示, 为圆的直径,点 在圆上, ,矩形所在的平面和圆所在的平面互相垂直,且 .

(1)求证: 平面

(2)设的中点为,求三棱锥的体积与多面体的体积之比的值.

【答案】(1)见解析;(2).

【解析】试题分析:1证明 由圆的直径性质推出 然后证明平面;(2)根据等级变换求三棱锥的体积,多面体的体积可分成三棱锥与四棱锥的体积之和,可求出,进而可得比值.

试题解析:(1)证明: 矩形所在的平面和平面互相垂直,且

平面

平面 .

为圆的直径,

平面.

(2)设的中点为,连接

四边形为平行四边形,

平面

平面.

显然,四边形为等腰梯形, ,因此为边长是1的正三角形.

三棱锥的体积

多面体的体积可分成三棱锥与四棱锥的体积之和,计算得两底间的距离

.

.

.

.

【方法点晴】本题主要考查线面垂直、线线垂直及棱锥的体积公式,属于难题.证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校设有甲、乙两个实验班,为了了解班级成绩,采用分层抽样的方法从甲、乙两班学生中分别抽取8名和6名测试他们的数学与英语成绩(单位:分),用表示,下面是乙班6名学生的测试分数: ,当学生的数学、英语成绩满足,且时,该学生定为优秀生.

(Ⅰ)已知甲班共有80名学生,用上述样本数估计乙班优秀生的数量;

(Ⅱ)从乙班抽出的上述6名学生中随机抽取3名,求至少有两名为优秀生的概率;

(Ⅲ)从乙班抽出的上述6名学生中随机抽取2名,其中优秀生数记为,求的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1:(1+4k)x﹣(2﹣3k)y+(2﹣14k)=0,圆C:x2+y2﹣6x﹣8y+9=0.
(1)判断直线l1与圆的位置关系,并证明你的结论;
(2)直线l2过直线l1的定点且l1⊥l2 , 若l1与圆C交与A,B两点,l2与圆C交与E,F两点,求AB+EF的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,△ABC各顶点的坐标分别为:A(0,4);B(﹣3,0),C(1,1)
(1)求点C到直线AB的距离;
(2)求AB边的高所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(20)(本小题满分13分)
已知函数,其中是自然对数的底数.
)求曲线在点处的切线方程;
)令,讨论的单调性并判断有无极值,有极值时求出极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中轴的正半轴重合.若曲线的参数方程为为参数),直线的极坐标方程为.

(1)将曲线的参数方程化为极坐标方程;

(2)由直线上一点向曲线引切线,求切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知Sn为数列{an}的前n项和,an>0,an2+2an=4Sn﹣1.
(1)求{an}的通项公式;
(2)设bn= ,求{bn}的前n项和Tn
(3)cn= ,{cn}的前n项和为Dn , 求证:Dn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中共有8个球,其中3个红球、2个白球、3个黑球.若从袋中任取3个球,则所取3个球中至多有1个红球的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点Pi(xi , yi)在直线li:aix+biy=ci上,若ai+bi=ici(i=1,2),且|P1P2|≥ 恒成立,则 + =

查看答案和解析>>

同步练习册答案