【题目】如图所示, 为圆的直径,点, 在圆上, ,矩形所在的平面和圆所在的平面互相垂直,且, , .
(1)求证: 平面;
(2)设的中点为,求三棱锥的体积与多面体的体积之比的值.
【答案】(1)见解析;(2).
【解析】试题分析:(1)证明 ,由圆的直径性质推出 ,然后证明平面;(2)根据等级变换求三棱锥的体积,多面体的体积可分成三棱锥与四棱锥的体积之和,可求出,进而可得比值.
试题解析:(1)证明: 矩形所在的平面和平面互相垂直,且,
平面,
又平面, .
又为圆的直径,
,
又,
平面.
(2)设的中点为,连接,
则,
又, ,
四边形为平行四边形,
,
又平面,
平面.
显然,四边形为等腰梯形, ,因此为边长是1的正三角形.
三棱锥的体积
多面体的体积可分成三棱锥与四棱锥的体积之和,计算得两底间的距离,
.
.
.
.
【方法点晴】本题主要考查线面垂直、线线垂直及棱锥的体积公式,属于难题.证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.
科目:高中数学 来源: 题型:
【题目】某学校设有甲、乙两个实验班,为了了解班级成绩,采用分层抽样的方法从甲、乙两班学生中分别抽取8名和6名测试他们的数学与英语成绩(单位:分),用表示,下面是乙班6名学生的测试分数: , , , , , ,当学生的数学、英语成绩满足,且时,该学生定为优秀生.
(Ⅰ)已知甲班共有80名学生,用上述样本数估计乙班优秀生的数量;
(Ⅱ)从乙班抽出的上述6名学生中随机抽取3名,求至少有两名为优秀生的概率;
(Ⅲ)从乙班抽出的上述6名学生中随机抽取2名,其中优秀生数记为,求的分布列及其数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l1:(1+4k)x﹣(2﹣3k)y+(2﹣14k)=0,圆C:x2+y2﹣6x﹣8y+9=0.
(1)判断直线l1与圆的位置关系,并证明你的结论;
(2)直线l2过直线l1的定点且l1⊥l2 , 若l1与圆C交与A,B两点,l2与圆C交与E,F两点,求AB+EF的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC各顶点的坐标分别为:A(0,4);B(﹣3,0),C(1,1)
(1)求点C到直线AB的距离;
(2)求AB边的高所在直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(20)(本小题满分13分)
已知函数,,其中是自然对数的底数.
(Ⅰ)求曲线在点处的切线方程;
(Ⅱ)令,讨论的单调性并判断有无极值,有极值时求出极值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中轴的正半轴重合.若曲线的参数方程为(为参数),直线的极坐标方程为.
(1)将曲线的参数方程化为极坐标方程;
(2)由直线上一点向曲线引切线,求切线长的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知Sn为数列{an}的前n项和,an>0,an2+2an=4Sn﹣1.
(1)求{an}的通项公式;
(2)设bn= ,求{bn}的前n项和Tn .
(3)cn= ,{cn}的前n项和为Dn , 求证:Dn< .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com