精英家教网 > 高中数学 > 题目详情
有三个命题:
①垂直于同一个平面的两条直线平行;
②过平面α的一条斜线l有且仅有一个平面与α垂直;
③异面直线a、b不垂直,那么过a的任一个平面与b都不垂直
④若直线a不平行于平面α,则平面α内所有的直线都与a异面
其中正确命题的个数为(  )
A、1B、2C、3D、4
考点:空间中直线与直线之间的位置关系
专题:空间位置关系与距离
分析:利用空间中线线、线面、面面间的位置关系求解.
解答: 解:①垂直于同一个平面的两条直线平行,
由直线与平面垂直的性质得①正确;
②过平面α的一条斜线l有且仅有一个平面与α垂直,
利用平面与平面垂直的判定定理得②正确;
③假设存在过a且与b垂直的平面α,则 b⊥α,a在α内,
所以b⊥a,这与异面直线a,b不垂直矛盾,
所以过a的任何平面与b都不垂直异面直线a、b不垂直,
那么过a的任一个平面与b都不垂直,故③正确;
④若直线a不平行于平面α,则平面α内的直线与a相交、平行或异面,故④错误.
故选:C.
点评:本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C:
x2
3
-
y2
2
=1以C的右焦点为圆心,且与C的渐近线相切的圆的半径是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过原点的直线l与曲线C:
x2
3
+y2
=1相交,若直线l被曲线C所截得的线段长不大于
6
,则直线l的倾斜角α的取值范围是(  )
A、
π
6
≤α≤
6
B、
π
6
<α<
3
C、
π
3
≤α≤
3
D、
π
4
≤α≤
4

查看答案和解析>>

科目:高中数学 来源: 题型:

有两个投资项目A、B,根据市场调查与预测,A项目的利润与投资成正比,其关系如图甲,B项目的利润与投资的算术平方根成正比,其关系如图乙.(注:利润与投资单位:万元)

(1)分别将A、B两个投资项目的利润表示为投资x(万元)的函数关系式f(x)和g(x),求y=f(x),y=g(x)在同一坐标系内围成封闭图形的面积;
(2)现将x(0≤x≤10)万元投资A项目,10-x万元投资B项目.h(x)表示投资A项目所得利润与投资B项目所得利润之和.求h(x)的最大值,并指出x为何值时,h(x)取得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面为矩形,AB=
2
,BC=1,E,F分别是AB,PC的中点,DE⊥PA.
(Ⅰ)求证:EF∥平面PAD;
(Ⅱ)求证:平面PAC⊥平面PDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),点A是椭圆C的右顶点,点O为坐标原点,在一象限椭圆C上存在一点P,使AP⊥OP,则椭圆的离心率范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<k<
1
3
,则关于x的方程
|2-x|
=kx的实数解的个数是(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的值域
(1)y=
x2-2x+5
x-1

(2)若x、y满足3x2+2y2=6x,求z=x2+y2的值域;
(3)f(x)=|2x+1|-|x-4|;
(4)y=x+
x-1

(5)f(x)=
x2+5
x2+4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足(x-2)2+(y-1)2=1.
(1)求k=
y+1
x
的最大值;
(2)若x+y+m≥0恒成立,求实数m的范围.

查看答案和解析>>

同步练习册答案