精英家教网 > 高中数学 > 题目详情
求下列函数的值域
(1)y=
x2-2x+5
x-1

(2)若x、y满足3x2+2y2=6x,求z=x2+y2的值域;
(3)f(x)=|2x+1|-|x-4|;
(4)y=x+
x-1

(5)f(x)=
x2+5
x2+4
考点:函数的值域
专题:计算题,函数的性质及应用
分析:(1)利用基本不等式求值域;
(2)配方法求值域;
(3)化为分段函数求值域;
(4)观察函数的单调性,利用单调性求值域;
(5)利用单调性求值域.
解答: 解:(1)y=
x2-2x+5
x-1
=(x-1)+
4
x-1

∵(x-1)+
4
x-1
≥4或(x-1)+
4
x-1
≤-4;
∴y=
x2-2x+5
x-1
的值域为(-∞,-4]∪[4,+∞);
(2)∵3x2+2y2=6x得y2=-
3
2
x2+3x(0≤x≤2),
∴z=x2+y2=x2-
3
2
x2+3x=-
1
2
(x-3)2+
9
2

∵0≤x≤2,
∴0≤-
1
2
(x-3)2+
9
2
≤4,
(3)f(x)=|2x+1|-|x-4|=
x+5,x≥4
3x-3,-
1
2
<x<4
-x-5,x≤-
1
2

f(x)=|2x+1|-|x-4|的值域为[-
9
2
,+∞);
(4)∵x≥1,∴y=x+
x-1
在[1,+∞)上单调递增,
∴y≥1,∴y=x+
x-1
的值域为[1,+∞);
(5)f(x)=
x2+5
x2+4
=
x2+4
+
1
x2+4

∵y=x+
1
x
在[2,+∞)上是增函数,
又∵
x2+4
≥2,
∴f(x)≥f(0)=2+
1
2
=
5
2

则函数f(x)=
x2+5
x2+4
的值域为[
5
2
,+∞).
点评:本题考查了函数值域的求法.高中函数值域求法有:1、观察法,2、配方法,3、反函数法,4、判别式法;5、换元法,6、数形结合法,7、不等式法,8、分离常数法,9、单调性法,10、利用导数求函数的值域,11、最值法,12、构造法,13、比例法.要根据题意选择.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=
|cosα|
cosα
+
|tanα|
tanα
的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有三个命题:
①垂直于同一个平面的两条直线平行;
②过平面α的一条斜线l有且仅有一个平面与α垂直;
③异面直线a、b不垂直,那么过a的任一个平面与b都不垂直
④若直线a不平行于平面α,则平面α内所有的直线都与a异面
其中正确命题的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2-2tx-1=0的两不等实根为x1,x2(x1<x2),函数f(x)=
x-t
x2+1
的定义域为[x1,x2].
(1)求f(x1)•f(x2)的值;
(2)设maxf(x)表示函数f(x)的最大值,minf(x)表示函数f(x)的最小值,记函数g(t)=maxf(x)-minf(x),求函数h(t)=g(log2t)•g(log12)在t∈(1,2]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=4,点P(x0,y0)在直线x-y-4=0上,O为坐标原点,若圆C上存在点Q,使∠OPQ=30°,则x0的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式|2-x|≤3,则y=x2-1的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在几何体ABCDE中,平面ABC⊥平面BCD,AE∥BD,△ABC为边长等于2的正三角形,CD=2
3
,BD=4,AE=2,M为CD的中点.
(Ⅰ)证明:平面ECD⊥平面ABC;
(Ⅱ)证明:EM∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是公比大于1的等比数列,Sn为数列{an}的前n项和,己知S3=7,且a1+3,3a2,a3+4构成等差数列.
(1)求数列{an}的通项公式;
(2)令bn=lna2n+1,n=1,2,3…,求数列{bn}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a,b满足4a2+b2+ab=1,则2a+b的最大值是
 

查看答案和解析>>

同步练习册答案