精英家教网 > 高中数学 > 题目详情
已知双曲线C:
x2
3
-
y2
2
=1以C的右焦点为圆心,且与C的渐近线相切的圆的半径是
 
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:先求出双曲线C:
x2
3
-
y2
2
=1的右焦点和渐近线,从而得到圆的圆心和半径.
解答: 解:双曲线
x2
3
-
y2
2
=1的右焦点为(
5
,0),
渐近线方程是
2
3
y=0,
∴半径r=
10
2+3
=
2

故答案为:
2
点评:本题考查圆锥曲线的性质和应用,解题时认真审题,注意公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,P,Q,R分别是AA1,D1C1,BC的中点,试证明过P,Q,R的截面为正六边形,且截面与其他棱的交点为棱的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集A={3,4,5},B={1,3,6},则A∩B=(  )
A、{3}
B、{4,5}
C、{1,6}
D、{2,4,5,7}

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,E为AD中点,M是棱PC的中点,PA=PD=2,BC=
1
2
AD=1,CD=
3
,求二面角E-PA-B的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,BC=3,AC=4,AB=5,点P是三条边上的任意一点,m=
PA
PB
,则m的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,an+1=an+a(n∈N*,a为常数),若平面上的三个不共线的非零向量
OA
OB
OC
满足
OC
=
a1
2
OA
+
a2013
2
OB
,三点A,B,C共线且该直线不过点O,则S2013的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-x3-2x2+4x,当x∈[-3,3]时,有f(x)≥m2-14m恒成立,则实数m的取值范围是(  )
A、(-3,11)
B、(3,11)
C、[3,11]
D、[2,7]

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
|cosα|
cosα
+
|tanα|
tanα
的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有三个命题:
①垂直于同一个平面的两条直线平行;
②过平面α的一条斜线l有且仅有一个平面与α垂直;
③异面直线a、b不垂直,那么过a的任一个平面与b都不垂直
④若直线a不平行于平面α,则平面α内所有的直线都与a异面
其中正确命题的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

同步练习册答案