分析 利用已知条件求出$\overrightarrow{a}$,$\overrightarrow{b}$,然后求解cos<$\overrightarrow{a}$,$\overrightarrow{b}$>.
解答 解:向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{3}$,$\overrightarrow{a}$+$\overrightarrow{b}$=($\sqrt{3}$,1),
可知$\overrightarrow{a}$=(0,1),$\overrightarrow{b}$=($\sqrt{3}$,0),
则cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{0}{1×\sqrt{3}}$=0.
故答案为:0.
点评 本题考查向量的数量积,利用观察法推出向量的坐标是解题的关键.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2015}$ | B. | $\frac{1}{2016}$ | C. | -$\frac{1}{4030}$ | D. | $\frac{1}{4032}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{1}{{e}^{2}}$,$\frac{1}{e}$) | B. | [$\frac{2}{3{e}^{2}}$,$\frac{1}{2e}$) | C. | [$\frac{1}{{e}^{2}}$,$\frac{2}{e}$) | D. | [$\frac{2}{3{e}^{2}}$,$\frac{1}{e}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com