精英家教网 > 高中数学 > 题目详情
7.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{3}$,$\overrightarrow{a}$+$\overrightarrow{b}$=($\sqrt{3}$,1),则cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=0.

分析 利用已知条件求出$\overrightarrow{a}$,$\overrightarrow{b}$,然后求解cos<$\overrightarrow{a}$,$\overrightarrow{b}$>.

解答 解:向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{3}$,$\overrightarrow{a}$+$\overrightarrow{b}$=($\sqrt{3}$,1),
可知$\overrightarrow{a}$=(0,1),$\overrightarrow{b}$=($\sqrt{3}$,0),
则cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{0}{1×\sqrt{3}}$=0.
故答案为:0.

点评 本题考查向量的数量积,利用观察法推出向量的坐标是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知(x2-x-ay)7的展开式中x7y2的系数为-$\frac{105}{2}$,a>0,则a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知二次函数f(x)=cx2-4x+a+1的值域是[1,+∞),则$\frac{1}{a}+\frac{9}{c}$的最小值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}x=3cosα\\ y=sinα\end{array}\right.$(α为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为$ρsin({θ-\frac{π}{4}})=\sqrt{2}$.
(Ⅰ)求C的普通方程和l的倾斜角;
(Ⅱ)设点P(0,2),l和C交于A,B两点,求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}中,a2=5,S5=40.等比数列{bn}中,b1=3,b4=81,
(1)求{an}和{bn}的通项公式   
(2)令cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)=x+xlnx,若存在实数m∈(2,+∞),使得f(m)≤k(m-2)成立,则整数k的最小取值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若(2x-1)2016=a0+a1x+…+a2016x2016(x∈R),则$\frac{1}{2}$+$\frac{{a}_{2}}{{2}^{2}{a}_{1}}$+$\frac{{a}_{3}}{{2}^{3}{a}_{1}}$+…+$\frac{{a}_{2016}}{{2}^{2016}{a}_{1}}$=(  )
A.-$\frac{1}{2015}$B.$\frac{1}{2016}$C.-$\frac{1}{4030}$D.$\frac{1}{4032}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若关于x的不等式xex-ax+a<0的解集为(m,n)(n<0),且(m,n)中只有一个整数,则实数a的取值范围是(  )
A.[$\frac{1}{{e}^{2}}$,$\frac{1}{e}$)B.[$\frac{2}{3{e}^{2}}$,$\frac{1}{2e}$)C.[$\frac{1}{{e}^{2}}$,$\frac{2}{e}$)D.[$\frac{2}{3{e}^{2}}$,$\frac{1}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.对任意非零实数a,b,若a?b的运算原理如图所示,则(log2$\frac{1}{8}$)?($\frac{1}{3}$)-2=-3.

查看答案和解析>>

同步练习册答案