精英家教网 > 高中数学 > 题目详情
17.对任意非零实数a,b,若a?b的运算原理如图所示,则(log2$\frac{1}{8}$)?($\frac{1}{3}$)-2=-3.

分析 先分别求出 log2$\frac{1}{8}$与($\frac{1}{3}$)-2的值,然后比较大小,选择下一步执行的语句,代入计算即可得解.

解答 解:∵log2$\frac{1}{8}$=-3,($\frac{1}{3}$)-2=9,
∴-3<9,
∴执行输出$\frac{b}{a}$,
∴则(log2$\frac{1}{8}$)?($\frac{1}{3}$)-2=$\frac{9}{-3}$=-3.
故答案为:-3.

点评 本题主要考查了条件结构,含有一个判断框,算法执行到此判断给定的条件P是否成立,选择不同的执行框(A框、B框).无论P条件是否成立,只能执行A框或B框之一,不可能既执行A框又执行B框,也不可能A框、B框都不执行.A框或B框中可以有一个是空的,即不执行任何操作.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{3}$,$\overrightarrow{a}$+$\overrightarrow{b}$=($\sqrt{3}$,1),则cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设Sn是等差数列{an}的前n项和,且满足等式S7=a5+a6+a8+a9,则$\frac{{a}_{7}}{{a}_{4}}$的值为(  )
A.$\frac{7}{4}$B.$\frac{4}{7}$C.$\frac{7}{8}$D.$\frac{8}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=aex+e-x的导函数f′(x)的图象关于原点对称,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线截圆M:(x-1)2+y2=1所得弦长为$\sqrt{3}$,则该双曲线的离心率为(  )
A.$\frac{4}{3}$B.$\frac{2}{3}$$\sqrt{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某空调专卖店试销A、B、C三种新型空调,销售情况如表所示:
 第一周  第二周第三周  第四周第五周 
 A型数量(台) 11 10 15 A4 A5
 B型数量(台) 10 12 13 B4 B5
 C型数量(台) 15 12C4  C5
(1)求A型空调前三周的平均周销售量;
(2)根据C型空调前三周的销售情况,预估C型空调五周的平均周销售量为10台,当C型空调周销售量的方差最小时,求C4,C5的值;
(注:方差s2=$\frac{1}{n}$[x1-$\overline{x}$)2+(x${\;}_{2}-\overline{x}$)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$为x1,x2,…,xn的平均数)
(3)为跟踪调查空调的使用情况,根据销售记录,从第二周和第三周售出的空调中分别随机抽取一台,求抽取的两台空调中A型空调台数X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,在三棱柱ABC-A1B1C1中,底面为正三角形,侧棱垂直底面,AB=4,AA1=6,若E,F分别是棱BB1,CC1上的点,且BE=B1E,C1F=$\frac{1}{3}$CC1,则异面直线A1E与AF所成角的余弦值为(  )
A.$\frac{\sqrt{3}}{6}$B.$\frac{\sqrt{2}}{6}$C.$\frac{\sqrt{3}}{10}$D.$\frac{\sqrt{2}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.计算:tan15°tan30°tan45°tan75°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知幂函数y=f(x)的图象经过点(3,9),对于偶函数y=g(x)(x∈R),当x≥0时.g(x)=f(x)-2x.
(1)求函数y=f(x)的解析式;
(2)求当x<0时,函数y=g(x)的解析式,并在给定坐标系下,画出函数y=g(x)的图象;
(3)写出函数y=|g(x)|的单调递减区间.

查看答案和解析>>

同步练习册答案