精英家教网 > 高中数学 > 题目详情
12.已知f(x)=x+xlnx,若存在实数m∈(2,+∞),使得f(m)≤k(m-2)成立,则整数k的最小取值为(  )
A.3B.4C.5D.6

分析 由所给不等式可以等价为新函数F(m)=m+mlnm-k(m-2),m>2,F(m)<0恒成立,对F(m)求导,由导函数得到极大值,只需要极大值小于0即可.

解答 解:∵存在实数m∈(2,+∞),使得f(m)≤k(m-2)成立,
∴题干等价于:当m>2时,不等式m+mlnm≤k(m-2)恒成立,
∴记F(m)=m+mlnm-k(m-2),m>2,即有F(m)<0恒成立.
令F′(m)=0,解得m=ek-2
∴F(m)max=F(m)极大值=F(ek-2)=2k-ek-2
当k=2时,F(m)max=4-1>0不合题意,
当k=3时,F(m)max=6-e>0不合题意,
当k=4时,F(m)max=8-e2>0不合题意,
当k=5时,F(m)max=10-e3<0合题意,
∴整数k的最小值为:5.
故选:C

点评 本题考查由所给不等式等价转化为新函数在m>2时,F(m)<0恒成立,对F(m)求导,由导函数得到极大值,只需要极大值小于0即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知定义域为(1,+∞)的函数f(x)的导函数为f′(x),且f(e)=2,$\frac{f(x)}{x}$=lnx•f′(x),则不等式xf(x)<2e的解集为(1,e).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.数列{an}满足${a_1}=\frac{3}{2}$,${a_{n+1}}=a_n^2-{a_n}+1$,则$T=\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2016}}}}$的整数部分是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知{an}是各项均为正数的等比数列,a3=a2+2a1,且a3+1是a2与a4的等差中项
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{a_n}+{log_2}{a_n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{3}$,$\overrightarrow{a}$+$\overrightarrow{b}$=($\sqrt{3}$,1),则cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.边长为2的正方形ABCD的顶点都在同一球面上,球心到平面ABCD的距离为1,则此球的表面积为(  )
A.B.C.12πD.20π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.当1<m<$\frac{3}{2}$时,复数(3+i)-m(2+i)在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数f(x)=$\frac{1}{{2}^{x}+\sqrt{2}}$,类比课本中推导等差数列前n项和公式的方法,可求得f(-2015)+f(-2014)+f(-2013)+…+f(2014)+f(2015)+f(2016)的值为1008$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某空调专卖店试销A、B、C三种新型空调,销售情况如表所示:
 第一周  第二周第三周  第四周第五周 
 A型数量(台) 11 10 15 A4 A5
 B型数量(台) 10 12 13 B4 B5
 C型数量(台) 15 12C4  C5
(1)求A型空调前三周的平均周销售量;
(2)根据C型空调前三周的销售情况,预估C型空调五周的平均周销售量为10台,当C型空调周销售量的方差最小时,求C4,C5的值;
(注:方差s2=$\frac{1}{n}$[x1-$\overline{x}$)2+(x${\;}_{2}-\overline{x}$)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$为x1,x2,…,xn的平均数)
(3)为跟踪调查空调的使用情况,根据销售记录,从第二周和第三周售出的空调中分别随机抽取一台,求抽取的两台空调中A型空调台数X的分布列及数学期望.

查看答案和解析>>

同步练习册答案