| A. | 30° | B. | 60° | C. | 120° | D. | 150° |
分析 设$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ(0°≤θ≤180°),由数量积求得cosθ,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角可求.
解答 解:设$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ(0°≤θ≤180°),
由|$\overrightarrow{a}$|=6$\sqrt{3}$,|$\overrightarrow{b}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=-9,得
cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}=\frac{-9}{6\sqrt{3}×1}=-\frac{\sqrt{3}}{2}$,
∴θ=150°.
故选:D.
点评 本题考查平面向量的数量积运算,考查了由数量积求向量的夹角,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$+1 | B. | 2$\sqrt{3}$+1 | C. | 2$\sqrt{6}$ | D. | 2+2$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{3}{2}$ | C. | -$\frac{3}{2}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com