精英家教网 > 高中数学 > 题目详情
1.若以数列{an}中相邻的三项ak,ak+1,ak+2(k∈N*)为三边长能构成三角形,则称这个三角形为ak的“伴生三角形”.
(Ⅰ)若公差为2的等差数列{an}的每一项an都有“伴生三角形”,求首项a1的取值范围;
(Ⅱ)若(Ⅰ)中的数列{an}的“伴生三角形”中存在直角三角形,求首项a1的所有可能取值.

分析 (I).由已知可得:an=2n+a1-2⇒an<an+1<an+2,…,依此类推即可得出;
(II).由(I)可知a1>2,an=2n+a1-2,利用{an}的“伴生三角形”中存在直角三角形及其勾股定理、数列通项公式即可得出.

解答 解:(I).由已知,an=2n+a1-2⇒an<an+1<an+2
故有an+an+1>an+2⇒an>an+2-an+1=2⇒a1>4-2n(恒成立).
∴a1>2.
(II).由(I)可知a1>2,an=2n+a1-2,
∵{an}的“伴生三角形”中存在直角三角形,∴$a_n^2+a_{n+1}^2=a_{n+2}^2⇒a_n^2=({{a_{n+2}}-{a_{n+1}}})({{a_{n+2}}+{a_{n+1}}})$,
故${(2n+{a_1}-2)^2}=2(4n+2{a_1}+2)$$4{n^2}+(4{a_1}-16)n+{a_1}^2-8{a_1}=0$,化为(2n+a1)(2n+a1-8)=0,
∵a1>2,∴a1=8-2n,∴n=1,2a1=6或a1=4.
∴首项a1的所有可能取值是6或4.

点评 本题考查了新定义“伴生三角形”、勾股定理、数列通项公式、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知x2∈{0,1,x},则实数x的值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.使得2x-14<$\sqrt{x}$<log2x成立的x的范围是(4,16).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知|$\overrightarrow{a}$|=6$\sqrt{3}$,|$\overrightarrow{b}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=-9,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.请阅读问题1的解答过程,然后借鉴问题1的解题思路完成问题2的解答:
问题1:已知数集A={a1,a2,…an}(1≤a1<a2<…<an,n≥2)具有性质P:对任意的i,j(1≤i≤j≤n),aiaj与$\frac{a_j}{a_i}$两数中至少有一个属于A.若数集{a1,2,3,a4}具有性质P,求a1,a4的值.
解:对于集合中最大的数a4,因为a4×a4>a4,3×a4>a4,2×a4>a4
所以$\frac{a_4}{a_4}$,$\frac{a_4}{3}$,$\frac{a_4}{2}$都属于该集合.
又因为1≤a1<2<3<a4,所以$\frac{a_4}{a_4}<\frac{a_4}{3}<\frac{a_4}{2}<{a_4}$.
所以${a_1}=\frac{a_4}{a_4}=1$,$\frac{a_4}{3}=2,\frac{a_4}{2}=3$,故a1=1,a4=6.
问题2:已知数集A={a1,a2,…an}(0≤a1<a2<…<an,n≥2)具有性质P:
对任意的i,j(1≤i≤j≤n),ai+aj与aj-ai两数中至少有一个属于A.若数集{a1,1,3,a4}具有性质P,求a1,a4的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.为响应国家扩大内需的政策,某厂家拟在2016年举行某一产品的促销活动,经调查测算,该产品的年销量(即该厂的年产量)x万件与年促销费用t(t≥0)万元满足x=4-$\frac{k}{2t+1}$(k为常数).如果不搞促销活动,则该产品的年销量只能是1万件.已知2016年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均生产投入成本的1.5倍(生产投入成本包括生产固定投入和生产再投入两部分).
(1)求常数k,并将该厂家2016年该产品的利润y万元表示为年促销费用t万元的函数;
(2)该厂家2016年的年促销费用投入多少万元时,厂家利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分别是AB、PD的中点.
(1)求证:AF∥平面PEC;
(2)求证:平面PEC⊥平面PDC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow{a}$=(cosx,cosx),$\overrightarrow{b}$=(sinx,-cosx),记函数f(x)=2$\overrightarrow{a}$•$\overrightarrow{b}$+1,其中x∈R.
(Ⅰ)求函数f(x)的最小正周期及函数f(x)的图象的对称中心的坐标;
(Ⅱ)若α∈(0,$\frac{π}{2}$),且f($\frac{α}{2}$)=$\frac{2}{3}$,求cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.复数z=(3-2i)i的共轭复数$\overline z$等于2-3i.

查看答案和解析>>

同步练习册答案