精英家教网 > 高中数学 > 题目详情
在三棱柱ABC-A1B1C1中,已知平面BB1C1C⊥平面ABC,AB=AC,D是BC中点,且B1D⊥BC1
(Ⅰ)证明:A1C∥平面B1AD;
(Ⅱ)证明BC1⊥平面B1AD.
考点:直线与平面垂直的判定,直线与平面平行的判定
专题:空间位置关系与距离
分析:(Ⅰ)连结BA1交AB1与点O,由棱柱知侧面AA1B1B为平行四边形,进而判断出O为BA1的中点,又D是BC的中点,推断出OD∥A1C,利用线面平行的判定定理推断出A1C∥平面B1AD.
(Ⅱ)由D是BC的中点,AB=AC,可知AD⊥BC,进而根据线面垂直的判定定理知AD⊥平面BB1C1C,进而根据性质推断出AD⊥BC1,最后根据线面垂直的判定定理推断出BC1⊥平面B1AD.
解答: 证明:(Ⅰ)连结BA1交AB1与点O,由棱柱知侧面AA1B1B为平行四边形,
∴O为BA1的中点,又D是BC的中点,
∴OD∥A1C,
∵A1C?平面B1AD,OD?平面B1AD,
∴A1C∥平面B1AD.
(Ⅱ)∵D是BC的中点,AB=AC,
∴AD⊥BC,
∵平面BB1C1C⊥平面ABC,平面BB1C1C∩平面ABC=BC,AD?平面ABC,
∴AD⊥平面BB1C1C,
∵BC1?平面BB1C1C,
∴AD⊥BC1
又B1D⊥BC1,且AD∩B1D=D,
∴BC1⊥平面B1AD.
点评:本题主要考查了线面垂直的判定定理的应用.解题的关键是找打线与平面内两相交的直线垂直.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-
1
3
x3+x2+(m2-1)x
,(x∈R),其中m>0
(Ⅰ)当m=2时,求曲线y=f(x)在点(3,f(3))处的切线的方程;
(Ⅱ)若f(x)在(
3
2
,+∞
)上存在单调递增区间,求m的取值范围
(Ⅲ)已知函数f(x)有三个互不相同的零点0,x1,x2且x1<x2,若对任意的x∈[x1,x2],f(x)>f(1)恒成立.求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知|
a
|+2|
b
|=3,
a
b
的夹角为60°,
c
=5
a
+3
b
d
=3
a
+k
b
,当实数k为何值时
c
d

(2)不共线向量
a
b
的夹角为小于120°的角,且|
a
|=1,|
b
|=2,已知向量
c
=
a
+2
b
,求|
c
|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知曲线C1:y=x3(x≥0)与曲线C2:y=-2x2+3x(x≥0)交于点O,A,与直线x=t(0<t<1)与曲线C1,C2交于B,D
(1)写出四边形ABOD的面积S与t的函数关系S=f(t)
(2)讨论f(t)的单调性,并求f(t)的最大值
(3)对任意t∈(0,1),x∈(
π
4
,π],f(t)>cos x+
3
sin x+a恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知过点P(-1,0)且倾斜角为
π
6
的直线l,以原点为极点,x轴的正半轴为极轴建立极坐标系,圆心C(3,
π
6
),半径r=1.
(Ⅰ)求直线l的参数方程及圆C的极坐标方程;
(Ⅱ)若直线l与圆C交于A,B两点,求AB的中点与点P的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)定义域为R,取x0∈R并且xn+1=f(xn)(n∈N),则称{xn}是f(x)的迭代数列.已知{an},{bn}均是f(x)=
1
x2+2
的迭代数列,Sn=
n
k=1
ak,Tn=
n
k=1
bk
(Ⅰ)对任意x,y∈R且x≠y,求证:|f(x)-f(y)|<
1
4
|x-y|.
(Ⅱ)求证:|Sn-Tn|<
2
3
(n∈N+).
(Ⅲ)求证:存在唯一实数T满足|Sn-nt|<
2
3
(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,设A(-1,0),B(1,0),C(m,n),且△ABC的周长为2
2
+2.
(1)求证:点C在一个椭圆上运动,并求该椭圆的标准方程;
(2)设直线l:mx+2ny-2=0.
①判断直线l与(1)中的椭圆的位置关系,并说明理由;
②过点A作直线l的垂线,垂足为H.证明:点H在定圆上,并求出定圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

从0,1,2,3,4,5,6这7个数字中选出4个不同的数字组成四位数.
(1)一共可以组成多少个四位数;
(2)一共可以组成多少个比1300大的四位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|ax2-2x+2=0,x∈R}至多有一个元素,求实数a的取值范围.

查看答案和解析>>

同步练习册答案