精英家教网 > 高中数学 > 题目详情
14.在平面直角坐标系xoy中,双曲线$\frac{x^2}{{2{m^2}}}-\frac{y^2}{3m}=1$的焦距为6,则所有满足条件的实数m构成的集合是{$\frac{3}{2}$}.

分析 根据题意,先由双曲线的方程分析可得m的取值范围,进而又由该双曲线的焦距为6,则有c=3,即$\sqrt{2{m}^{2}+3m}$=3,解可得m的值,结合m的范围可得m的值,用集合表示即可得答案.

解答 解:根据题意,双曲线的方程为:$\frac{x^2}{{2{m^2}}}-\frac{y^2}{3m}=1$,则有$\left\{\begin{array}{l}{2{m}^{2}>0}\\{3m>0}\end{array}\right.$,解可得m>0,
则有c=$\sqrt{2{m}^{2}+3m}$,
又由该双曲线的焦距为6,则有c=3,
即$\sqrt{2{m}^{2}+3m}$=3,
解可得:m=-3或$\frac{3}{2}$,
又由m>0,
则m=$\frac{3}{2}$;
即所有满足条件的实数m构成的集合是{$\frac{3}{2}$};
故答案为:{$\frac{3}{2}$}.

点评 本题考查双曲线的几何性质,注意焦距是2c.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,在几何体A1B1C1-ABC中,∠ACB=90°,AC=BC=2,AA1⊥平面ABC,AA1∥BB1∥CC1,BB1:CC1:AA1=3:2:1,且AA1=1.
(Ⅰ)求证:平面A1B1C1⊥平面A1ABB1
(Ⅱ)求平面ABC与平面A1BC1所成锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在区域$Ω=\left\{{(x,y)|\left\{\begin{array}{l}x≥0\\ x+y≤1\\ x-y≤1\end{array}\right.}\right\}$中,若满足ax+y>0的区域面积占Ω面积的$\frac{1}{3}$,则实数a的值是(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,在正三棱柱ABC-A1B1C1中,已知AB=AA1=3,点P在棱CC1上,则三棱锥P-ABA1的体积为$\frac{9\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.甲盒子中有编号分别为1,2的两个乒乓球,乙盒子中有编号分别为3,4,5,6的四个乒乓球.现分别从两个盒子中随机地各取出1个乒乓球,则取出的乒乓球的编号之和大于6的概率为$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在三棱锥A-BCD中,E,F分别为BC,CD上的点,且BD∥平面AEF.
(1)求证:EF∥平ABD面;
(2)若AE⊥平面BCD,BD⊥CD,求证:平面AEF⊥平面ACD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$=2,且$\overrightarrow{b}$=(1,$\sqrt{3}$),则$\overrightarrow{a}$+$\overrightarrow{b}$在$\overrightarrow{b}$方向上的投影为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设向量$\overrightarrow{AB}=(x,x+1),\overrightarrow{CD}=(1,-2)$,且$\overrightarrow{AB}$∥$\overrightarrow{CD}$,则x=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有五人五钱,令上二人所得与下三人等.问各得几何?”其意思为:“现有甲乙丙丁戊五人依次差值等额分五钱,要使甲乙两人所得的钱与丙丁戊三人所得的钱相等,问每人各得多少钱?”根据题意,乙得(  )
A.$\frac{2}{3}$钱B.$\frac{5}{6}$钱C.1钱D.$\frac{7}{6}$钱

查看答案和解析>>

同步练习册答案