精英家教网 > 高中数学 > 题目详情
9.甲盒子中有编号分别为1,2的两个乒乓球,乙盒子中有编号分别为3,4,5,6的四个乒乓球.现分别从两个盒子中随机地各取出1个乒乓球,则取出的乒乓球的编号之和大于6的概率为$\frac{3}{8}$.

分析 列举基本事件,即可求出概率.

解答 解:分别从每个盒子中随机地取出1个乒乓球,可能出现以下情况:(1,3)、(1,4)、(1,5)、(1,6)、(2,3)、(2,4)、(2,5)、(2,6)、共8种情况,
其中编号之和大于6的有:1+6=7,2+5=7,2+6=8,共3种情况,
∴取出的乒乓球的编号之和大于6的概率为$\frac{3}{8}$,
故答案为:$\frac{3}{8}$.

点评 本题考查古典概型,考查学生的计算能力,确定基本事件的个数是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率是$\frac{{\sqrt{2}}}{2}$,且过点$P(\sqrt{2},1)$.直线y=$\frac{{\sqrt{2}}}{2}$x+m与椭圆C相交于A,B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求△PAB的面积的最大值;
(Ⅲ)设直线PA,PB分别与y轴交于点M,N.判断|PM|,|PN|的大小关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知i是虚数单位,则复数$\frac{-1+i}{3+4i}$的共轭复数在复平面内对应的点所在的象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在平面直角坐标系xOy中,双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1的离心率是$\frac{\sqrt{7}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知对于任意的x∈(-∞,1)∪(5,+∞),都有x2-2(a-2)x+a>0,则实数a的取值范围是(1,5].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在平面直角坐标系xoy中,双曲线$\frac{x^2}{{2{m^2}}}-\frac{y^2}{3m}=1$的焦距为6,则所有满足条件的实数m构成的集合是{$\frac{3}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在平面直角坐标系xoy中,椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右顶点和上顶点分别为点A,B,M是线段AB的中点,且$\overrightarrow{OM}•\overrightarrow{AB}=-\frac{3}{2}{b^2}$..
(1)求椭圆的离心率;
(2)若a=2,四边形ABCD内接于椭圆,AB∥CD,记直线AD,BC的斜率分别为k1,k2,求证:k1•k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=\left\{\begin{array}{l}{2^{1-|x|}},x≤1\\-{(x-2)^2},x>1\end{array}\right.$,若$f(m)=\frac{1}{4}$,则f(1-m)=(  )
A.-1B.-4C.-9D.-16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥S-ABCD中,SD⊥平面ABCD,四边形ABCD是直角梯形,∠ADC=∠DAB=90°,SD=AD=AB=2,DC=1
(1)求二面角S-BC-A的余弦值;
(2)设P是棱BC上一点,E是SA的中点,若PE与平面SAD所成角的正弦值为$\frac{2\sqrt{26}}{13}$,求线段CP的长.

查看答案和解析>>

同步练习册答案