精英家教网 > 高中数学 > 题目详情
20.已知i是虚数单位,则复数$\frac{-1+i}{3+4i}$的共轭复数在复平面内对应的点所在的象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接由复数代数形式的乘除运算化简复数$\frac{-1+i}{3+4i}$,求出复数$\frac{-1+i}{3+4i}$的共轭复数,进一步求出在复平面内对应的点的坐标得答案.

解答 解:∵$\frac{-1+i}{3+4i}$=$\frac{(-1+i)(3-4i)}{(3+4i)(3-4i)}=\frac{1+7i}{25}=\frac{1}{25}+\frac{7}{25}i$,
∴复数$\frac{-1+i}{3+4i}$的共轭复数为:$\frac{1}{25}-\frac{7}{25}i$.
∴$\frac{1}{25}-\frac{7}{25}i$在复平面内对应的点的坐标为:($\frac{1}{25}$,$-\frac{7}{25}$),位于第四象限.
故选:D.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知A、B为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右顶点,F1,F2为其左右焦点,双曲线的渐近线上一点P(x0,y0)(x0<0,y0>0),满足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=0,且∠PBF1=45°,则双曲线的离心率为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=x|x-2|,则不等式f(2-ln(x+1))>f(3)的解集为{x|-1<x<$\frac{1}{e}$-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在正四面体ABCD中,O是△BCD的中心,E,F分别是AB,AC上的动点,且$\overrightarrow{BE}$=λ$\overrightarrow{BA}$,$\overrightarrow{CF}$=(1-λ)$\overrightarrow{CA}$
(1)若OE∥平面ACD,求实数λ的值;
(2)若λ=$\frac{1}{2}$,正四面体ABCD的棱长为2$\sqrt{2}$,求平面DEF和平面BCD所成的角余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.斐波那契数列{an}满足:${a_1}=1,{a_2}=1,{a_n}={a_{n-1}}+{a_{n-2}}({n≥3,n∈{N^*}})$.若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前n项所占的格子的面积之和为Sn,每段螺旋线与其所在的正方形所围成的扇形面积为cn,则下列结论错误的是(  )
A.${S_{n+1}}=a_{n+1}^2+{a_{n+1}}•{a_n}$B.a1+a2+a3+…+an=an+2-1
C.a1+a3+a5+…+a2n-1=a2n-1D.4(cn-cn-1)=πan-2•an+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在区域$Ω=\left\{{(x,y)|\left\{\begin{array}{l}x≥0\\ x+y≤1\\ x-y≤1\end{array}\right.}\right\}$中,若满足ax+y>0的区域面积占Ω面积的$\frac{1}{3}$,则实数a的值是(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆$Γ:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点F(1,0),椭圆Γ的左,右顶点分别为M,N.过点F的直线l与椭圆交于C,D两点,且△MCD的面积是△NCD的面积的3倍.
(Ⅰ)求椭圆Γ的方程;
(Ⅱ)若CD与x轴垂直,A,B是椭圆Γ上位于直线CD两侧的动点,且满足∠ACD=∠BCD,试问直线AB的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.甲盒子中有编号分别为1,2的两个乒乓球,乙盒子中有编号分别为3,4,5,6的四个乒乓球.现分别从两个盒子中随机地各取出1个乒乓球,则取出的乒乓球的编号之和大于6的概率为$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,过点A(-4,0)的直线l与椭圆C相切于点B,与y轴交于点D(0,2),又椭圆的离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)圆Q与直线l相切于点B,且经过点F2,求圆Q的方程,并判断圆Q与圆x2+y2=a2的位置关系.

查看答案和解析>>

同步练习册答案