| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 直接由复数代数形式的乘除运算化简复数$\frac{-1+i}{3+4i}$,求出复数$\frac{-1+i}{3+4i}$的共轭复数,进一步求出在复平面内对应的点的坐标得答案.
解答 解:∵$\frac{-1+i}{3+4i}$=$\frac{(-1+i)(3-4i)}{(3+4i)(3-4i)}=\frac{1+7i}{25}=\frac{1}{25}+\frac{7}{25}i$,
∴复数$\frac{-1+i}{3+4i}$的共轭复数为:$\frac{1}{25}-\frac{7}{25}i$.
∴$\frac{1}{25}-\frac{7}{25}i$在复平面内对应的点的坐标为:($\frac{1}{25}$,$-\frac{7}{25}$),位于第四象限.
故选:D.
点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${S_{n+1}}=a_{n+1}^2+{a_{n+1}}•{a_n}$ | B. | a1+a2+a3+…+an=an+2-1 | ||
| C. | a1+a3+a5+…+a2n-1=a2n-1 | D. | 4(cn-cn-1)=πan-2•an+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com