精英家教网 > 高中数学 > 题目详情
4.已知对于任意的x∈(-∞,1)∪(5,+∞),都有x2-2(a-2)x+a>0,则实数a的取值范围是(1,5].

分析 对△进行讨论,利用二次函数的性质列不等式解出.

解答 解:△=4(a-2)2-4a=4a2-20a+16=4(a-1)(a-4).
(1)若△<0,即1<a<4时,x2-2(a-2)x+a>0在R上恒成立,符合题意;
(2)若△=0,即a=1或a=4时,方程x2-2(a-2)x+a>0的解为x≠a-2,
显然当a=1时,不符合题意,当a=4时,符合题意;
(3)当△>0,即a<1或a>4时,∵x2-2(a-2)x+a>0在(-∞,1)∪(5,+∞)恒成立,
∴$\left\{\begin{array}{l}{1-2(a-2)+a≥0}\\{25-10(a-2)+a≥0}\\{1<a-2<5}\end{array}\right.$,解得3<a≤5,
又a<1或a>4,∴4<a≤5.
综上,a的范围是(1,5].
故答案为(1,5].

点评 本题考查了二次函数与二次不等式的关系,二次函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.某销售公司为了解员工的月工资水平,从1000位员工中随机抽取100位员工进行调查,得到如下的频率分布直方图:
(1)试由此图估计该公司员工的月平均工资;
(2)该公司工资发放是以员工的营销水平为重要依据来确定的,一般认为,工资低于4500元的员工属于学徒阶段,没有营销经验,若进行营销将会失败;高于4500元的员工是具备营销成熟员工,进行营销将会成功.现将该样本按照“学徒阶段工资”、“成熟员工工资”分为两层,进行分层抽样,从中抽出5人,在这5人中任选2人进行营销活动.活动中,每位员工若营销成功,将为公司赢得3万元,否则公司将损失1万元,试问在此次比赛中公司收入多少万元的可能性最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.斐波那契数列{an}满足:${a_1}=1,{a_2}=1,{a_n}={a_{n-1}}+{a_{n-2}}({n≥3,n∈{N^*}})$.若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前n项所占的格子的面积之和为Sn,每段螺旋线与其所在的正方形所围成的扇形面积为cn,则下列结论错误的是(  )
A.${S_{n+1}}=a_{n+1}^2+{a_{n+1}}•{a_n}$B.a1+a2+a3+…+an=an+2-1
C.a1+a3+a5+…+a2n-1=a2n-1D.4(cn-cn-1)=πan-2•an+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆$Γ:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点F(1,0),椭圆Γ的左,右顶点分别为M,N.过点F的直线l与椭圆交于C,D两点,且△MCD的面积是△NCD的面积的3倍.
(Ⅰ)求椭圆Γ的方程;
(Ⅱ)若CD与x轴垂直,A,B是椭圆Γ上位于直线CD两侧的动点,且满足∠ACD=∠BCD,试问直线AB的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知一组数据3,6,9,8,4,则该组数据的方差是5.2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.甲盒子中有编号分别为1,2的两个乒乓球,乙盒子中有编号分别为3,4,5,6的四个乒乓球.现分别从两个盒子中随机地各取出1个乒乓球,则取出的乒乓球的编号之和大于6的概率为$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,在直三棱柱ABC-A1B1C1中,AB=1,BC=2,BB1=3,∠ABC=90°,点D为侧棱BB1上的动点,当AD+DC1最小时,三棱锥D-ABC1的体积为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,已知点P(2,0),曲线C的参数方程为$\left\{\begin{array}{l}x=4{t^2}\\ y=4t\end{array}\right.$(t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系.
(Ⅰ)求曲线C的普通方程和极坐标方程;
(Ⅱ)过点P且倾斜角为$\frac{π}{4}$的直线l交曲线C于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=Asin(ωx+$\frac{π}{3}$)(A>0,ω>0)图象的相邻两条对称轴之间的距离为π,且经过点($\frac{π}{3}$,$\frac{\sqrt{3}}{2}$)
(1)求函数f(x)的解析式;
(2)若角α满足f(α)+$\sqrt{3}$f(α-$\frac{π}{2}$)=1,α∈(0,π),求α值.

查看答案和解析>>

同步练习册答案