精英家教网 > 高中数学 > 题目详情
13.在直角坐标系xOy中,已知点P(2,0),曲线C的参数方程为$\left\{\begin{array}{l}x=4{t^2}\\ y=4t\end{array}\right.$(t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系.
(Ⅰ)求曲线C的普通方程和极坐标方程;
(Ⅱ)过点P且倾斜角为$\frac{π}{4}$的直线l交曲线C于A,B两点,求|AB|.

分析 (Ⅰ)利用三种方程的转化方法,即可求曲线C的普通方程和极坐标方程;
(Ⅱ)直线l的标准参数方程为$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}s\\ y=\frac{{\sqrt{2}}}{2}s\end{array}\right.(s为参数)$,将其代入y2=4x,利用参数的几何意义,即可求|AB|.

解答 解:(Ⅰ)因为$\left\{\begin{array}{l}x=4{t^2}\\ y=4t\end{array}\right.$消t得曲线C的普通方程为y2=4x.(2分)
∵x=ρcosθ,y=ρsinθ,∴ρ2sin2θ=4ρcosθ,
即曲线C的极坐标方程为ρsin2θ=4cosθ.(5分)
(Ⅱ)因为直线l过点P(2,0)且倾斜角为$\frac{π}{4}$,
所以直线l的标准参数方程为$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}s\\ y=\frac{{\sqrt{2}}}{2}s\end{array}\right.(s为参数)$,(7分)
将其代入y2=4x,整理可得${s^2}-4\sqrt{2}s-16=0$,(8分)$△={(-4\sqrt{2})^2}+4×16>0$,
设A,B对应的参数分别为s1,s2则 ${s_1}+{s_2}=4\sqrt{2},{s_1}{s_2}=-16$,
所以$|{AB}|=|{{s_1}-{s_2}}|=\sqrt{{{({s_1}+{s_2})}^2}-4{s_1}{s_2}}=\sqrt{{{(4\sqrt{2})}^2}+4×16}=4\sqrt{6}$.(10分)

点评 本题考查三种方程的转化,考查参数方程的运用,考查参数的几何意义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为锐角θ,且$\frac{|\overrightarrow{a}|}{|\overrightarrow{b}|}$=cosθ,则称$\overrightarrow{a}$被$\overrightarrow{b}$“同余”.已知$\overrightarrow{b}$被$\overrightarrow{a}$“同余”,则$\overrightarrow{a}-\overrightarrow{b}$在$\overrightarrow{a}$上的投影是(  )
A.$\frac{{\overrightarrow{a}}^{2}-{\overrightarrow{b}}^{2}}{|\overrightarrow{a}|}$B.$\frac{{\overrightarrow{a}}^{2}-{\overrightarrow{b}}^{2}}{{\overrightarrow{a}}^{2}}$C.$\frac{{\overrightarrow{b}}^{2}-{\overrightarrow{a}}^{2}}{|\overrightarrow{b}|}$D.$\frac{{\overrightarrow{a}}^{2}-{\overrightarrow{b}}^{2}}{|\overrightarrow{b}|}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知对于任意的x∈(-∞,1)∪(5,+∞),都有x2-2(a-2)x+a>0,则实数a的取值范围是(1,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在平面直角坐标系xoy中,椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右顶点和上顶点分别为点A,B,M是线段AB的中点,且$\overrightarrow{OM}•\overrightarrow{AB}=-\frac{3}{2}{b^2}$..
(1)求椭圆的离心率;
(2)若a=2,四边形ABCD内接于椭圆,AB∥CD,记直线AD,BC的斜率分别为k1,k2,求证:k1•k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}前5项和为50,a7=22,数列{bn}的前n项和为Sn,b1=1,bn+1=3Sn+1.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若数列{cn}满足$\frac{c_1}{b_1}+\frac{c_2}{b_2}+…+\frac{c_n}{b_n}={a_{n+1}}$,n∈N*,求c1+c2+…+c2017的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=\left\{\begin{array}{l}{2^{1-|x|}},x≤1\\-{(x-2)^2},x>1\end{array}\right.$,若$f(m)=\frac{1}{4}$,则f(1-m)=(  )
A.-1B.-4C.-9D.-16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.漳州水仙鳞茎硕大,箭多花繁,色美香郁,素雅娟丽,有“天下水仙数漳州”之美誉.现某水仙花雕刻师受雇每天雕刻250粒水仙花,雕刻师每雕刻一粒可赚1.2元,如果雕刻师当天超额完成任务,则超出的部分每粒赚1.7元;如果当天未能按量完成任务,则按实际完成的雕刻量领取当天工资.
(I)求雕刻师当天收入(单位:元)关于雕刻量n(单位:粒,n∈N)的函数解析式f(n);
(Ⅱ)该雕刻师记录了过去10天每天的雕刻量n(单位:粒),整理得如表:
雕刻量n210230250270300
频数12331
以10天记录的各雕刻量的频率作为各雕刻量发生的概率.
(ⅰ)求该雕刻师这10天的平均收入;
(ⅱ)求该雕刻师当天收入不低于300元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)=2g(x)+$\frac{x-4}{{x}^{2}+1}$,若f($\frac{1}{sinθ}$)+f(cos2θ)<f(π)-f($\frac{1}{π}$),则θ的取值范围是(  )
A.(2kπ+$\frac{π}{6}$,2kπ+$\frac{5π}{6}$),k∈Z
B.(2kπ-$\frac{π}{6}$,2kπ)∪(2kπ,2kπ+π)∪(2kπ+π,2kπ+$\frac{7}{6}$π),k∈Z
C.(2kπ-$\frac{5π}{6}$,2kπ-$\frac{π}{6}$),k∈Z
D.(2kπ-$\frac{7π}{6}$,2kπ-π)∪(2kπ-π,2kπ)∪(2kπ,2kπ+$\frac{π}{6}$),k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=alnx-bx3,a,b为实数,b≠0,e为自然对数的底数,e=2.71828.
(1)当a<0,b=-1时,设函数f(x)的最小值为g(a),求g(a)的最大值;
(2)若关于x的方程f(x)=0在区间(1,e]上有两个不同的实数解,求$\frac{a}{b}$的取值范围.

查看答案和解析>>

同步练习册答案