精英家教网 > 高中数学 > 题目详情
20.如图,△ABC中,O是BC的中点,AB=AC,AO=2OC=2.将△BAO沿AO折起,使B点与图中B'点重合.
(1)求证:AO⊥平面B'OC;
(2)当三棱锥B'-AOC的体积取最大时,求二面角A-B'C-O的余弦值;
(3)在(2)的条件下,试问在线段B'A上是否存在一点P,使CP与平面B'OA所成的角的正弦值为$\frac{{\sqrt{5}}}{3}$?证明你的结论,并求AP的长.

分析 (1)证明AO⊥OB',AO⊥OC,然后证明AO⊥平面B'OC;
(2)在平面B'OC内,作B'D⊥OC于点D,当D与O重合时,三棱锥B'-AOC的体积最大,过O点作OH⊥B'C于点H,连AH,说明∠AHO即为二面角A-B'C-O的平面角.在三角形AOH中求解二面角A-B1C-O的余弦值.
(3)连接OP,说明OC⊥平面B'OA,CP与平面B'OA所成的角为∠CPO,证明CP⊥AB′,然后求解即可.

解答 解:(1)证明:∵AB=AC且O是BC中点,
∴AO⊥BC即AO⊥OB',AO⊥OC,
又∵OB'∩OC=O,∴AO⊥平面B'OC;…(3分)
(2)在平面B'OC内,作B'D⊥OC于点D,
则由(Ⅰ)可知B'D⊥OA
又OC∩OA=O,∴B'D⊥平面OAC,
即B'D是三棱锥B'-AOC的高,
又B'D≤B'O,所以当D与O重合时,三棱锥B'-AOC的体积最大,
过O点作OH⊥B'C于点H,连AH,
由(Ⅰ)知AO⊥平面B'OC,
又B'C⊆平面B'OC,∴B'C⊥AO∵AO∩OH=O,∴B'C⊥平面AOH,
∴B'C⊥AH∴∠AHO即为二面角A-B'C-O的平面角.
在$R{t_{△AOH}}中,AO=2,OH=\frac{{\sqrt{2}}}{2}$,∴$AH=\frac{{3\sqrt{2}}}{2}$,
∴$cos∠AHO=\frac{OH}{AH}=\frac{1}{3}$,
故二面角A-B1C-O的余弦值为$\frac{1}{3}$…(7分)
(3)连接OP,在(2)的条件下,易证OC⊥平面B'OA,
∴CP与平面B'OA所成的角为∠CPO,
∴$sin∠CPO=\frac{OC}{CP}=\frac{{\sqrt{5}}}{3}$∴$CP=\frac{3}{{\sqrt{5}}}$
又在△ACB′中,$sin∠A{B^'}C=\frac{{\frac{3}{{\sqrt{2}}}}}{{\sqrt{5}}}=\frac{3}{{\sqrt{10}}}=\frac{CP}{{\sqrt{2}}}$,
∴CP⊥AB′,
∴${B^'}P=\sqrt{{{({\sqrt{2}})}^2}-C{P^2}}=\frac{{\sqrt{5}}}{5}$,
∴$AP=\frac{{4\sqrt{5}}}{5}$…(12分)

点评 本题考查直线与平面垂直,二面角的平面镜以及直线与平面所成角,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在△ABC中,D为BC边的中点,且AB=6,AC=4,AD=$\sqrt{10}$,求BC边的长及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,角A,B,C所对边长分别为a,b,c,且满足a(sinA-$\frac{sinB}{2}$)+b(sinB-$\frac{sinA}{2}$)=csinC,则sinC的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{15}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设a,b大于0,则a+$\frac{1}{b}$,b+$\frac{1}{a}$的值(  )
A.都大于2B.至少有一个不大于2
C.都小于2D.至少有一个不小于2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列说法不正确的是(  )
A.“φ=$\frac{π}{2}$”是“函数y=sin(2x+ϕ)为偶函数”的充要条件
B.若“p且q”为假,则p,q至少有一个是假命题
C.命题“?x0∈R,x02-x0-1<0”的否定是“?x∈R,x2-x-1≥0”
D.当a<0时,幂函数y=xa在(0,+∞)上是单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若等比数列{an}的前n项和为Sn,且Sn=1-2an,则数列{an}的公比是(  )
A.$\frac{2}{3}$B.$-\frac{2}{3}$C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数y=sin2x-4cosx+2的最大值(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知|$\overrightarrow a$|=5,|$\overrightarrow b$|=12,且(3$\overrightarrow a$)•($\frac{1}{5}\overrightarrow b$)=-18$\sqrt{3}$,则向量$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:
①2 014∈[4];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.
其中,正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案