精英家教网 > 高中数学 > 题目详情
18.有一口大钟每到整点就自动以响铃的方式报时,1点响1声,2点响2声,3点响3声,…,12点响12声(12时制),且每次报时时相邻两次响铃之间的间隔均为1秒.在一次大钟报时时,某人从第一声铃响开始计时,如果此次是12点的报时,则此人至少需等待11秒才能确定时间;如果此次是11点的报时,则此人至少需等待11秒才能确定时间.

分析 根据铃响的规律分析即可.

解答 解:大钟报时时最多可响12声,
12点的报时,大钟会响12声,
所以某人从听到第一声响开始计时,
需要至少等待11秒才能听到第12声响,
确定这时是12点.

点评 本题考查简单的推理,考查分析问题与解决问题的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}满足a2+a4=-6,a3+a5=-2.
(1)求{an}的通项公式;
(2)求数列{|an|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.化简:$\frac{si{n}^{2}(α-\frac{π}{2})}{cos(α-3π)sin(\frac{3π}{2}+α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为正方形,PD=AD=2,M,N分别为线段AC上的点.若∠MBN=30°,则三棱锥M-PNB体积的最小值为$\frac{4}{3}(2-\sqrt{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,PA⊥底面ABCD,M是棱PD的中点,且PA=AB=AC=2,BC=2$\sqrt{2}$. 
(Ⅰ)求证:CD⊥平面PAC;
(Ⅱ)求二面角M-AB-C的大小;
(Ⅲ)如果N是棱AB上一点,且直线CN与平面MAB所成角的正弦值为$\frac{{\sqrt{10}}}{5}$,求$\frac{AN}{NB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.过边长为2的正方形的中心作直线l将正方形分成两部分,将其中的一个部分沿直线l翻折到另一个部分上.则两个部分图形中不重叠的面积的最大值是12-8$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{x}{2}$,数列{an}满足关系为an=f(an-1),(n≥2且n∈N)且a1=16.
(1)证明:数列{an}是等比数列;
(2)求数列{an}的通项公式;
(3)设bn=log2an,求数列{bn}的前n项和Sn,并求Sn取最大值时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.海中一小岛,周围anmile内有暗礁. 海轮由西向东航行,望见这岛在北偏东75°.航行bnmile以后,望见这岛在北偏东60°.这艘海轮不改变航向继续前进,没有触礁.那么a、b所满足的不等关系是(  )
A.a<$\frac{1}{2}$bB.a>$\frac{1}{2}$bC.a<$\frac{\sqrt{3}}{2}$bD.a>$\frac{\sqrt{3}}{2}$b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.A、B是两个随机事件,若P(A)=0.5,P(B)=0.6,P(A∪B)=0.2,则P(AB)=0.9.

查看答案和解析>>

同步练习册答案