精英家教网 > 高中数学 > 题目详情
设函数.
(1)若时有极值,求实数的值和的极大值;
(2)若在定义域上是增函数,求实数的取值范围.
(1)极大值为(2)

试题分析:(1)先求导,根据时有极值,则,可求得的值。代入导数解析式并整理,令导数大于0可得增区间,令导数小于0可得减区间。根据单调性可求极值。(2)在定义域上是增函数,则当恒成立。因为,且,所以只需,即恒成立。可用基本不等式求的最大值则
(1)∵时有极值,∴有
 ∴,∴        2分
∴有

∴由

在区间上递增,在区间上递减     5分
的极大值为     6分
(2)若在定义域上是增函数,则时恒成立

恒成立,           9分
恒成立,
为所求。         12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=(x-a)(x-b)2,a,b是常数.
(1)若a≠b,求证:函数f(x)存在极大值和极小值;
(2)设(1)中f(x)取得极大值、极小值时自变量的值分别为x1,x2,设点A(x1,f(x1)),B(x2,f(x2)).如果直线AB的斜率为-,求函数f(x)和f′(x)的公共递减区间的长度;
(3)若f(x)≥mxf′(x)对于一切x∈R恒成立,求实数m,a,b满足的条件.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的的单调递减区间是           

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=x2-2lnx的单调递减区间是(  )
A.(0,1]B.[1,+∞)
C.(-∞,-1]∪(0,1]D.[-1,0)∪(0,1]

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ln x+2x,g(x)=a(x2+x).
(1)若a=,求F(x)=f(x)-g(x)的单调区间;
(2)若f(x)≤g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为单调增函数,则实数的取值范围为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,曲线在点处的切线与直线垂直.
(1)求的值;
(2)若对于任意的恒成立,求的范围;
(3)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

水库的蓄水量随时间而变化,现用表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于的近似函数关系式为

(1)该水库的蓄求量小于50的时期称为枯水期.以表示第1月份(),同一年内哪几个月份是枯水期?
(2)求一年内该水库的最大蓄水量(取计算).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数在区间上是减函数,那么的最大值为            

查看答案和解析>>

同步练习册答案