【题目】已知数列
的前
项和
满足
(
,
为常数,
,且
),
,
,若存在正整数
,使得
成立;数列
是首项为2,公差为
的等差数列,
为其前
项和,则以下结论正确的是( )
A.
B.![]()
C.
D.![]()
科目:高中数学 来源: 题型:
【题目】某市在开展创建“全国文明城市”活动中,工作有序扎实,成效显著,尤其是城市环境卫生大为改观,深得市民好评.“创文”过程中,某网站推出了关于环境治理和保护问题情况的问卷调查,现从参与问卷调查的人群中随机选出200人,并将这200人按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.
![]()
(1)求出a的值;
(2)若已从年龄较小的第1,2组中用分层抽样的方法抽取5人,现要再从这5人中随机抽取3人进行问卷调查,设第2组抽到
人,求随机变量
的分布列及数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班同学在假期进行社会实践活动,对
岁的人群随机抽取n人进行了一次当前投资生活方式——“房地产投资”的调查,得到如下统计和各年龄段人数频率分布直方图:
![]()
![]()
(Ⅰ)求
,
,
的值;
(Ⅱ)从年龄在
岁的“房地产投资”人群中采取分层抽样法抽取9人参加投资管理学习活动,其中选取3人作为代表发言,记选取的3名代表中年龄在
岁的人数为
,求
的分布列和期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,
,
,平面
平面PAD,E是
的中点,F是DC上一点,G是PC上一点,且
,
.
![]()
(1)求证:平面
平面PAB;
(2)若
,
,求直线PB与平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,若
的图象上相邻两条对称轴的距离为
,图象过点
.
(1)求
的表达式和
的递增区间;
(2)将函数
的图象向右平移
个单位长度,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数
的图象.若函数
在区间
上有且只有一个零点,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某项针对我国《义务教育数学课程标准》的研究中,列出各个学段每个主题所包含的条目数(如下表),下图是统计表的条目数转化为百分比,按各学段绘制的等高条形图,由图表分析得出以下四个结论,其中错误的是( )
![]()
![]()
A.除了“综合实践”外,其它三个领域的条目数都随着学段的升高而增加,尤其“图象几何” 在第三学段增加较多,约是第二学段的
倍.
B.所有主题中,三个学段的总和“图形几何”条目数最多,占50%,综合实践最少,约占4% .
C.第一、二学段“数与代数”条目数最多,第三学段“图形几何”条目数最多.
D.“数与代数”条目数虽然随着学段的增长而增长,而其百分比却一直在减少.“图形几何”条目数,百分比都随学段的增长而增长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知直线
的参数方程为
(
是参数),以原点为极点,
轴的非负半轴
为极轴,建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)求直线
的普通方程与曲线
的直角坐标方程;
(Ⅱ)设点
在曲线
上,曲线
在点
处的切线与直线
垂直,求点
的直角坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com