精英家教网 > 高中数学 > 题目详情
18.已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.
(1)证明:PF⊥FD;
(2)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.

分析 (1)连接AF,由勾股定理可得DF⊥AF,由PA⊥平面ABCD,由线面垂直性质定理可得DF⊥PA,再由线面垂直的判定定理得到DF⊥平面PAF,再由线面垂直的性质定理得到PF⊥FD;
(2)由PA⊥平面ABCD,可得∠PBA是PB与平面ABCD所成的角,即∠PBA=45°,取AD的中点M,则FM⊥AD,FM⊥平面PAD,在平面PAD中,过M作MN⊥PD于N,连接FN,则PD⊥平面FMN,则∠MNF即为二面角A-PD-F的平面角,解三角形MNF可得答案

解答 解:(1)证明:因为PA⊥平面ABCD,PD?平面ABCD,所以PA⊥FD,
连接AF,易知AF=DF=$\sqrt{2}$,所以AF2+DF2=AD2,从而AF⊥FD,
又因为AF∩PA=A,AF?平面PAF,PA?平面PAF,
所以FD⊥平面PAF,又因为PF?平面PAF,所以;PF⊥FD.
(2)因为PB与平面ABCD所成的角为450,所以∠PBA=45°,AD=AB=1.
过F做FM⊥AD于M,过点M做MN⊥PD于N,则∠MNF就是二面角A-PD-F的平面角,
事实上FM⊥AD,FM⊥AP,PA∩AD=A,
所以FM⊥平面PAD,PD?平面PAD,∴FM⊥PD,又 MN⊥PD,
MN?平面MNF,MF?平面MNF,MN∩FM=M,∴PD⊥平面MNF.
其中FM=AB=1,MN=$\frac{\sqrt{5}}{5}$,NF=$\sqrt{F{M}^{2}+M{N}^{2}}=\frac{\sqrt{30}}{5},cos∠MNF=\frac{\sqrt{6}}{6}$.
∴二面角A-PD-F的余弦值为:$\frac{\sqrt{6}}{6}$.

点评 本题考查了求平面间的夹角,空间直线与直线之间的位置关系,解法有向量法和几何法,几何法的关键是熟练掌握空间线面关系的判定,性质.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.用篱笆围成一个面积为100m2的矩形菜园,则最少需要篱笆的长度为40m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=sin(2x+$\frac{π}{2}$)-4cos(π-x)sin(x-$\frac{π}{6}$)
(1)求f(0)的值;
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知焦点在x轴上的椭圆C为$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{{b}^{2}}$=1,F1、F2分别是椭圆C的左、右焦点,离心率e=$\frac{\sqrt{2}}{2}$.
(1)求椭圆C的方程;
(2)设点Q的坐标为(1,0),椭圆上是否存在一点P,使得直线PF1,PF2都与以Q为圆心的一个圆相切?若存在,求出P点坐标及圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{6}}}{3}$,上顶点为(0,1).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过原点O作两条互相垂直的射线,与椭圆C交于A,B两点,求证:点O到直线AB的距离为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在1,2,3,…,9这9个自然数中,任取3个不同的数.
(1)组成三位数“abc”,若满足a<b>c的三位数叫做凸数,这样的凸三位数有多少个?
(2)设X为所取3个数中奇数的个数,求随机变量X的概率分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.随机变量ξ的分布列为:
ξ0123
Px0.20.30.4
随机变量ξ的方差D(ξ)1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=x3+ax2+3x-1在x=-3时取得极值,则a=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.对于正整数a,b,存在唯一一对整数q和r,使得a=bq+r,0≤r<b.特别地,当r=0时,称b能整除a,记作b|a,已知A={1,2,3,4,5,…,23},若M⊆A,且存在a,b∈M,b<a,b|a,则称M为集合A的“和谐集”.
(1)存在q∈A,使得2011=91q+r (0≤r<91),试求q,r的值;
(2)已知集合B={5,7,8,9,11,12,t}满足B⊆A,但B不为“和谐集”,试写出所有满足条件的t值;
(3)已知集合C为集合A的有12个元素的子集,又m∈A,当m∈C时,无论C中其它元素取何值,C都为集合A的“和谐集”,试求满足条件的m的最大值,并简要说明理由.

查看答案和解析>>

同步练习册答案