精英家教网 > 高中数学 > 题目详情
6.已知焦点在x轴上的椭圆C为$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{{b}^{2}}$=1,F1、F2分别是椭圆C的左、右焦点,离心率e=$\frac{\sqrt{2}}{2}$.
(1)求椭圆C的方程;
(2)设点Q的坐标为(1,0),椭圆上是否存在一点P,使得直线PF1,PF2都与以Q为圆心的一个圆相切?若存在,求出P点坐标及圆的方程;若不存在,请说明理由.

分析 (1)椭圆C为$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{{b}^{2}}$=1焦点在x轴上,a=2$\sqrt{2}$,椭圆的离心率e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,解得:c=2.则b2=a2-c2=4即可求得椭圆C的方程;
(2)假设存在满足条件的点P,设出其坐标,根据两点式写出直线PF1,PF2的方程,根据圆的切线满足圆心到直线的距离等于半径,利用点到直线的距离公式列出有关点P的坐标的方程,再利用点P的坐标满足椭圆的方程,解方程组求得点P的坐标.

解答 解:(1)由题可知:椭圆C为$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{{b}^{2}}$=1焦点在x轴上,a=2$\sqrt{2}$,
椭圆的离心率e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,解得:c=2.
∴b2=a2-c2=4.
故椭圆C的方程为$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$;…(4分)
(2)假设椭圆上存在一点P(x0,y0),
使得直线PF1,PF2都与以Q为圆心的一个圆相切,则Q到直线PF1,PF2的距离相等.
∵F1(-2,0),F2(2,0),
∴直线PF1的方程为(x0+2)y-y0x-2y0=0,
直线PF2的方程为(x0-2)y-y0x+2y0=0.…(6分)
∴d1=$\frac{丨{y}_{0}丨}{\sqrt{({x}_{0}-2)^{2}+{y}_{0}^{2}}}$=$\frac{丨3{y}_{0}丨}{\sqrt{({x}_{0}+2)^{2}+{y}_{0}^{2}}}$=d2
化简整理得:8x02-40x0+32+8y02=0.…(9分)
∵点在椭圆上,
∴x02+2y02=8
由以上两式解得:x0=2或x0=8(舍去),
∴y0=$\sqrt{2}$或y0=-$\sqrt{2}$,此时相切的圆的半径r=1.…(11分)
∴椭圆上存在点P,其坐标为(2,$\sqrt{2}$)或(2,-$\sqrt{2}$),
使得直线PF1,PF2都与以Q为圆心的圆(x-1)2+y2=1相切.…(12分)

点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,考查点到直线的距离公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知底面为矩形的四棱锥D-ABCE,AB=1,BC=2,AD=3,DE=$\sqrt{5}$,且二面角D-AE-C的正切值为-2.
(1)求证:平面ADE⊥平面CDE;
(2)求点D到平面ABCE的距离;
(3)求二面角A一BD-C的大小.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:选择题

,则( )

A. B.

C.4 D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.学校体育队共有5人,其中会打排球的有2人,会打乒乓球的有5人,现从中选2人.设ξ为选出的人中既会打排球又会打乒乓球的人数,则随机变量ξ的均值E(ξ)=(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,若sin2A+sin2B=2sin2C,则角C为(  )
A.钝角B.直角C.锐角D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知PA垂直于以AB为直径的ΘO所在的平面,C是ΘO上异于A,B的动点,PA=1,AB=2,当三棱锥P-ABC取得最大体积时,求:
(1)PC与AB所成角的大小;
(2)PA与面PCB所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.
(1)证明:PF⊥FD;
(2)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=cos($\frac{π}{2}$+x)+sin2($\frac{π}{2}$+x),x∈R,则f(x)的最大值为(  )
A.$\frac{3}{4}$B.$\frac{5}{4}$C.1D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=lnx-\frac{1}{2}x$.
(Ⅰ)求f(x)的图象在点(1,f(1))处的切线方程;
(Ⅱ)当x>1时,$f(x)+\frac{a}{x}<0$恒成立,求实数a的取值范围;
(Ⅲ)证明:当n∈N*且n≥2时,$\frac{1}{2ln2}+\frac{1}{3ln3}+…+\frac{1}{nlnn}>\frac{{3{n^2}-n-2}}{{2{n^2}+2n}}$.

查看答案和解析>>

同步练习册答案