精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=cos($\frac{π}{2}$+x)+sin2($\frac{π}{2}$+x),x∈R,则f(x)的最大值为(  )
A.$\frac{3}{4}$B.$\frac{5}{4}$C.1D.2$\sqrt{2}$

分析 利用诱导公式得到:f(x)=(sinx-$\frac{1}{2}$)2+$\frac{5}{4}$.根据二次函数和三角函数的单调性即可得出.

解答 解:f(x)=cos($\frac{π}{2}$+x)+sin2($\frac{π}{2}$+x)
=-sinx+cos2x
=-sinx+1-sin2x
=-(sinx-$\frac{1}{2}$)2+$\frac{5}{4}$.
∵x∈R,
∴当sinx=$\frac{1}{2}$,f(x)max=$\frac{5}{4}$.
故选:B.

点评 本题考查了诱导公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.方程x2+y2+4kx-2y+5k=0表示圆,则k的取值范围是(  )
A.k>1B.k>1或k<$\frac{1}{4}$C.k<$\frac{1}{4}$D.以上答案 都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知焦点在x轴上的椭圆C为$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{{b}^{2}}$=1,F1、F2分别是椭圆C的左、右焦点,离心率e=$\frac{\sqrt{2}}{2}$.
(1)求椭圆C的方程;
(2)设点Q的坐标为(1,0),椭圆上是否存在一点P,使得直线PF1,PF2都与以Q为圆心的一个圆相切?若存在,求出P点坐标及圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在1,2,3,…,9这9个自然数中,任取3个不同的数.
(1)组成三位数“abc”,若满足a<b>c的三位数叫做凸数,这样的凸三位数有多少个?
(2)设X为所取3个数中奇数的个数,求随机变量X的概率分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.随机变量ξ的分布列为:
ξ0123
Px0.20.30.4
随机变量ξ的方差D(ξ)1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC=2,M、N分别为PC、PB的中点.
(1)求证:PB⊥平面ADMN;
(2)求BD与平面ADMN所成的角;
(3)点E在线段PA上,试确定点E的位置,使二面角A-CD-E为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=x3+ax2+3x-1在x=-3时取得极值,则a=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.有6个座位连成一片排,现有3人入座,则恰有两个空位相邻的不同坐法的种数是(  )
A.36B.48C.72D.120

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=\frac{1}{3}m{x^3}-(2+\frac{m}{2}){x^2}+4x+1,\;g(x)=x+m$.
(1)当m≥4时,求f(x)的单调递增区间;
(2)是否存在m<0,使得对任意的x1,x2∈[2,3],都有f(x1)-g(x2)≤1恒成立,求出m的取值范围;
(3)若函数h(x)=xg(x)+n在区间(0,1)上与x轴有两个不同的交点,求n(1+m+n)的取值范围.

查看答案和解析>>

同步练习册答案