精英家教网 > 高中数学 > 题目详情
4.有6个座位连成一片排,现有3人入座,则恰有两个空位相邻的不同坐法的种数是(  )
A.36B.48C.72D.120

分析 先求出3个人在6个位置的所有坐法,再减去空座各不相邻的坐法和三个空座相邻的坐法得答案.

解答 解:3人坐6个座位,坐法共有A63
其中空坐各不相邻的坐法为C43A33
三个空坐相连的坐法C41A33
∴满足条件的坐法共有A63-C43A33-C41A33=72.
故选:C.

点评 本题考查排列与组合问题,考查了插空排列,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.学校体育队共有5人,其中会打排球的有2人,会打乒乓球的有5人,现从中选2人.设ξ为选出的人中既会打排球又会打乒乓球的人数,则随机变量ξ的均值E(ξ)=(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=cos($\frac{π}{2}$+x)+sin2($\frac{π}{2}$+x),x∈R,则f(x)的最大值为(  )
A.$\frac{3}{4}$B.$\frac{5}{4}$C.1D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=(x+1)lnx-a(x-1),a∈R
(1)若a=0时,求f(x)在x=1处的切线
(2)若函数f(x)>0 对?x∈(1,+∞)恒成立.求a的取值范围
(3)从编号为1到2015的2015个小球中,有放回地连续取16次小球 (每次取一球),记所取得的小球的号码互不相同的概率为p,求证:$\frac{1}{p}$>e${\;}^{\frac{120}{2011}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知在四棱锥P-ABCD中,底面ABCD是直角梯形,∠BAD=90°,2AB=2AD=CD,侧面PAD是正三角形且垂直于底面ABCD,E是PC的中点.
(1)求证:BE⊥平面PCD;
(2)求二面角B-PC-D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow a$,$\overrightarrow b$满足|$\overrightarrow a$|=2|$\overrightarrow b$|≠0,且函数在f(x)=$\frac{1}{3}{x^3}+\frac{1}{2}|\overrightarrow a|{x^2}$$+(\overrightarrow a•\overrightarrow b)x$在R上有极值,则向量$\overrightarrow a$,$\overrightarrow b$的夹角的取值范围是($\frac{π}{3}$,π).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=lnx-\frac{1}{2}x$.
(Ⅰ)求f(x)的图象在点(1,f(1))处的切线方程;
(Ⅱ)当x>1时,$f(x)+\frac{a}{x}<0$恒成立,求实数a的取值范围;
(Ⅲ)证明:当n∈N*且n≥2时,$\frac{1}{2ln2}+\frac{1}{3ln3}+…+\frac{1}{nlnn}>\frac{{3{n^2}-n-2}}{{2{n^2}+2n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知y=f′(x)是函数y=f(x)的导数,将y=f(x)和y=f′(x)的图象画在同一个直角坐标系中,不可能正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在直角坐标系xOy中,F1,F2分别为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左、右焦点,点P在椭圆上,若△POF2是面积为$\sqrt{3}$的正三角形,则椭圆的离心率为$\sqrt{3}$-1.

查看答案和解析>>

同步练习册答案