精英家教网 > 高中数学 > 题目详情
20.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC=2,M、N分别为PC、PB的中点.
(1)求证:PB⊥平面ADMN;
(2)求BD与平面ADMN所成的角;
(3)点E在线段PA上,试确定点E的位置,使二面角A-CD-E为45°.

分析 (1)推导出AN⊥PB,AD⊥PB,由此能证明PB⊥平面ADMN.
(2)连结DN,则∠BDN是BD与平面ADMN所成的角,由此能求出BD与平面ADMN所成的角.
(3)作AF⊥CD于点F,连结EF,则∠AFE就是二面角A-CD-E的平面角,由此能求出当$AE=\frac{{4\sqrt{5}}}{5}$时,二面角A-CD-E的平面角为45°.

解答 证明:(1)∵M、N分别为PC、PB的中点,AD∥BC,
∴AD∥MN,即A,D,M,N四点共面
∵N是PB的中点,PA=AB,∴AN⊥PB.
∵AD⊥面PAB,∴AD⊥PB.
又∵AD∩AN=N
∴PB⊥平面ADMN.(4分)
解:(2)连结DN,∵PB⊥平面ADMN,
∴∠BDN是BD与平面ADMN所成的角.
在Rt△BDN中,$sin∠BDN=\frac{BN}{BD}=\frac{1}{2}$,
∴BD与平面ADMN所成的角是$\frac{π}{6}$.(8分)
(3)作AF⊥CD于点F,连结EF,
∵PA⊥底面ABCD∴CD⊥PA
∴CD⊥平面PAF∴CD⊥EF
∴∠AFE就是二面角A-CD-E的平面角
若∠AFE=45°,则AE=AF
由 AF•CD=AB•AD,可解得$AF=\frac{{4\sqrt{5}}}{5}$
∴当$AE=\frac{{4\sqrt{5}}}{5}$时,二面角A-CD-E的平面角为45°.(12分)

点评 本题考查线面垂直的证明,考查线面角的求法,考查满足条件的点的位置的确定与求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=-log3(9x)•log3$\frac{x}{3}$($\frac{1}{9}$≤x≤27).
(1)设t=log3x,求t的取值范围
(2)求f(x)的最小值,并指出f(x)取得最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知PA垂直于以AB为直径的ΘO所在的平面,C是ΘO上异于A,B的动点,PA=1,AB=2,当三棱锥P-ABC取得最大体积时,求:
(1)PC与AB所成角的大小;
(2)PA与面PCB所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.计算C${\;}_{n}^{1}$+2•C${\;}_{n}^{2}$2+…+n•C${\;}_{n}^{n}$2n-1=n(1+2)n-1,可以采用以下方法:
构造恒等式:C${\;}_{n}^{0}$+C${\;}_{n}^{1}$2x+C${\;}_{n}^{2}$22x2+…+C${\;}_{n}^{n}$2nxn=(1+2x)n
两边对x导,得C${\;}_{n}^{1}$2+2•C${\;}_{n}^{2}$22x+••+n•C${\;}_{n}^{n}$2nxn-1=2n(1+2x)n-1
在上式中令x=1,得C${\;}_{n}^{1}$+2•C${\;}_{n}^{2}$2+…+n•C${\;}_{n}^{n}$2n-1=n(1+2)n-1=n•3n-1
类比上述计算方法,计算C${\;}_{n}^{1}$2+22C${\;}_{n}^{2}$22+32C${\;}_{n}^{3}$23+…+n2C${\;}_{n}^{n}$2n=2n(2n+1)3n-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=cos($\frac{π}{2}$+x)+sin2($\frac{π}{2}$+x),x∈R,则f(x)的最大值为(  )
A.$\frac{3}{4}$B.$\frac{5}{4}$C.1D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中点.
(Ⅰ)求证:平面EAC⊥平面PBC;
(Ⅱ)求二面角P-AC-E的余弦值;
(Ⅲ)求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=(x+1)lnx-a(x-1),a∈R
(1)若a=0时,求f(x)在x=1处的切线
(2)若函数f(x)>0 对?x∈(1,+∞)恒成立.求a的取值范围
(3)从编号为1到2015的2015个小球中,有放回地连续取16次小球 (每次取一球),记所取得的小球的号码互不相同的概率为p,求证:$\frac{1}{p}$>e${\;}^{\frac{120}{2011}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow a$,$\overrightarrow b$满足|$\overrightarrow a$|=2|$\overrightarrow b$|≠0,且函数在f(x)=$\frac{1}{3}{x^3}+\frac{1}{2}|\overrightarrow a|{x^2}$$+(\overrightarrow a•\overrightarrow b)x$在R上有极值,则向量$\overrightarrow a$,$\overrightarrow b$的夹角的取值范围是($\frac{π}{3}$,π).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数y=$\frac{1}{2}$cos2x+$\frac{{\sqrt{3}}}{2}$sinxcosx+1,x∈R.
(1)求它的振幅、周期和初相;
(2)求函数的最大值,最小值以及取得最大最小值时的x的取值;
(3)求函数的单调递增区间.

查看答案和解析>>

同步练习册答案