精英家教网 > 高中数学 > 题目详情
9.设函数f(x)=sin(2x+$\frac{π}{2}$)-4cos(π-x)sin(x-$\frac{π}{6}$)
(1)求f(0)的值;
(2)求f(x)的单调递增区间.

分析 (1)利用三角恒等变换化简函数f(x),再计算f(0)的值,
(2)利用正弦函数的图象与性质求f(x)的单调增区间.

解答 解:函数f(x)=sin(2x+$\frac{π}{2}$)-4cos(π-x)sin(x-$\frac{π}{6}$)
=cos2x+4cosx(sinxcos$\frac{π}{6}$-cosxsin$\frac{π}{6}$)
=cos2x+2$\sqrt{3}$sinxcosx-2cos2x
=cos2x+$\sqrt{3}$sin2x-(1+cos2x)
=$\sqrt{3}$sin2x-1;
(1)f(0)=$\sqrt{3}$sin0-1=-1;
(2)令-$\frac{π}{2}$+2kπ≤2x≤$\frac{π}{2}$+2kπ,k∈Z,
解得-$\frac{π}{4}$+kπ≤x≤$\frac{π}{4}$+kπ,k∈Z;
∴函数f(x)的单调递增区间是[-$\frac{π}{4}$+kπ,$\frac{π}{4}$+kπ],(k∈Z).

点评 本题考查了三角恒等变换以及正弦函数的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若下列方程:x2+4ax-4a+3=0,x2+2ax-2a=0,x2+(a-1)x+a2=0至少有一个方程有实根,则实数a的取值范围为{a|a≥-1或a≤-$\frac{3}{2}$}..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知n∈N*,给出4个表达式:①an=$\left\{\begin{array}{l}{0,n为奇数}\\{1,n为偶数}\end{array}\right.$,②an=$\frac{1+(-1)^{n}}{2}$,③an=$\frac{1+cosnπ}{2}$,④an=|sin$\frac{nπ}{2}$|,其中能作为数列:0,1,0,1,0,1,0,1,…的通项公式的是(  )
A.①②③B.①②④C.②③④D.①③④

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:选择题

,则( )

A. B.

C.4 D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求数列{(2n-1)•3n}前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.学校体育队共有5人,其中会打排球的有2人,会打乒乓球的有5人,现从中选2人.设ξ为选出的人中既会打排球又会打乒乓球的人数,则随机变量ξ的均值E(ξ)=(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,若sin2A+sin2B=2sin2C,则角C为(  )
A.钝角B.直角C.锐角D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.
(1)证明:PF⊥FD;
(2)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知在四棱锥P-ABCD中,底面ABCD是直角梯形,∠BAD=90°,2AB=2AD=CD,侧面PAD是正三角形且垂直于底面ABCD,E是PC的中点.
(1)求证:BE⊥平面PCD;
(2)求二面角B-PC-D的正弦值.

查看答案和解析>>

同步练习册答案