精英家教网 > 高中数学 > 题目详情
12.某校开展研究性学习活动需组成指导教师团队,决定用分层抽样的方法从高一、高二、高三三个年级相关教师中抽取,有关数据如下表:(单位:人)
 年级 相关教师数抽取教师数 
 高一 x 4
 高二 12 2
 高三 18 y
(Ⅰ)求x、y;
(Ⅱ)现要从高二、高三抽取的教师中选取2人作讲座,求这2位教师都来自高三的概率.

分析 (Ⅰ)根据分层抽样的定义建立比例关系即可得到结论.
(Ⅱ)利用列举法,求出对应事件的个数,结合古典概型的概率公式进行计算即可.

解答 解:(Ⅰ)由分层抽样的定义得$\frac{4}{x}=\frac{2}{12}=\frac{y}{18}$得x=24,y=3,
(Ⅱ)高二抽取2人,设为A,B,高三抽取3人,设为a,b,c,从5人选2人有(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),
(a,b),(a,c),(b,c),共10种,若两位老师来自高三,则有(a,b),(a,c),(b,c),共3种,
则对应的概率P=$\frac{3}{10}$.

点评 本题主要考查分层抽样的应用以及古典概型的概率的计算,根据条件建立比例关系以及利用列举法是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.定义在R上的函数f(x)的导函数为f′(x),f(0)=0.若对任意x∈R,都有f(x)>f′(x)+1,则使得f(x)+ex<1成立的x的取值范围为(  )
A.(-∞,0)B.(-∞,1)C.(-1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知实数x、y满足条件$\left\{\begin{array}{l}{x≤2}\\{y≤2}\\{x+y-2≥0}\end{array}\right.$,则$\frac{y+1}{x+4}$的取值范围为[$\frac{1}{6}$,$\frac{3}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.甲、乙两名学生的六次数学测试成绩(百分制)如图所示.
①甲同学成绩的中位数大于乙同学成绩的中位数;
②甲同学的平均分比乙同学高;
③甲同学的平均分比乙同学低;
④甲同学成绩的标准差小于乙同学成绩的标准差.
上面说法正确的是(  )
A.③④B.①②C.②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.母线长为1的圆锥的侧面展开图的圆心角为$\frac{4}{3}$π,则该圆锥的体积是(  )
A.$\frac{2\sqrt{5}}{81}$πB.$\frac{4\sqrt{5}}{27}$πC.$\frac{4\sqrt{5}}{81}$πD.$\frac{\sqrt{10}}{81}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.下列结论中正确的是②④.
①$sin{750°}=\frac{{\sqrt{3}}}{2}$.
②如果随机变量ξ~$B(20,\frac{1}{2})$,那么D(ξ)为5.
③如果命题“?(p∨q)”为假命题,则p,q均为真命题.
④已知圆 x2+y2+2x-4y+1=0关于直线 2ax-by+2=0(a,b∈R)对称,则ab$≤\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在一次期末模拟测试中,某市教研室在甲、乙两地各抽取了10名学生的数学成绩,得到茎叶图如图所示.
(Ⅰ)分别计算甲、乙两地这10名学生的平均成绩;
(Ⅱ)以样本估计总体,不通过计算,指出甲、乙两地哪个地方学生成绩较好;
(Ⅲ)在甲地被抽取的10名学生中,从成绩在120分以上的8名学生中随机抽取2人,求恰有1名学生成绩在140分以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线方程为$y=\frac{3}{4}x$,则双曲线的离心率为(  )
A.$\frac{5}{3}$B.$\frac{{\sqrt{21}}}{3}$C.$\frac{5}{4}$D.$\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的渐近线为等边三角形OAB的边OA、OB所在直线,直线AB过焦点,且|AB|=2,则双曲线实轴长为(  )
A.$\sqrt{3}$B.$3\sqrt{2}$C.$\frac{3}{2}$D.3

查看答案和解析>>

同步练习册答案