精英家教网 > 高中数学 > 题目详情
19.数列{an}前数列n项和Sn,已知${S_n}+{a_n}+n=0(n∈{N^*})$恒成立.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:$\frac{1}{{2{a_1}{a_2}}}+\frac{1}{{{2^2}{a_2}{a_3}}}+…+\frac{1}{{{2^n}{a_n}{a_{n+1}}}}<2$.

分析 (Ⅰ)通过Sn+an+n=0与Sn-1+an-1+n-1=0作差可知2an=an-1-1,进而变形可构造首项、公比均为$\frac{1}{2}$的等比数列{an+1},进而计算可得结论;
(II)通过(Ⅰ)裂项可知$\frac{1}{{2}^{n}{a}_{n}{a}_{n+1}}$=2($\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$),进而并项相加即得结论.

解答 (Ⅰ)解:∵Sn+an+n=0,
∴n≥2时,Sn-1+an-1+n-1=0,
两式相减可得,2an=an-1-1,
变形得:2(an+1)=an-1+1,
∵S1+a1+1=2a1+1=0,即${a_1}=-\frac{1}{2}$,即${a_1}+1=\frac{1}{2}$,
∴数列{an+1}是以$\frac{1}{2}$为首项、$\frac{1}{2}$为公比的等比数列,
∴${a_n}+1={(\frac{1}{2})^n}$,∴${a_n}={(\frac{1}{2})^n}-1(n∈{N^*})$;
(II)证明:由(Ⅰ)知,$\frac{1}{{{2^n}{a_n}{a_{n+1}}}}=\frac{1}{{{2^n}(\frac{1}{2^n}-1)(\frac{1}{{{2^{n+1}}}}-1)}}=2(\frac{1}{{{2^n}-1}}-\frac{1}{{{2^{n+1}}-1}})$,
∴$\frac{1}{{2{a_1}{a_2}}}+\frac{1}{{{2^2}{a_2}{a_3}}}+…+\frac{1}{{{2^n}{a_n}{a_{n+1}}}}=-2(\frac{1}{{{2^1}-1}}-\frac{1}{{{2^2}-1}}+\frac{1}{{{2^2}-1}}$$-\frac{1}{{{2^3}-1}}+…+\frac{1}{{{2^n}-1}}-\frac{1}{{{2^{n+1}}-1}})=2(\frac{1}{{{2^1}-1}}-\frac{1}{{{2^{n+1}}-1}})=2(1-\frac{1}{{{2^{n+1}}-1}})<2$,
即$\frac{1}{{2{a_1}{a_2}}}+\frac{1}{{{2^2}{a_2}{a_3}}}+…+\frac{1}{{{2^n}{a_n}{a_{n+1}}}}<2$.

点评 本题考查数列的通项及前n项和,考查裂项相消法,构造等比数列是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设正项数列{an}的前n项和满足Sn=$\frac{1}{4}$(an+1)2.求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.一个袋子里装有编号为1,2,…,6的6个相同大小的小球,其中1到3号球是红色球,其余为黑色球.若从中任意摸出一个球,记录它的颜色和号码后再放回到袋子里,然后再摸出一个球,记录它的颜色和号码,求两次摸出的球都是红球,且至少有一个球的号码是偶数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示的几何体是由以正△ABC为底面的直棱柱(侧棱垂直于底面的棱柱)被平面DEF所截而得,AB=2,BD=1,AF=2,CE=3,O为BC的中点.
(Ⅰ)求证:直线OA∥平面DEF;
(Ⅱ)求直线FC与平面DEF所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=-\frac{1}{2}t\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数),曲线C的参数方程为$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),设M是曲线C上任一点,连结OM并延长到Q,使|OM|=|MQ|.
(1)求点Q轨迹的直角坐标方程;
(2)若直线l与点Q轨迹相交于A,B两点,点P的直角坐标为(0,2),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求证:$\sqrt{x}-\sqrt{x-1}<\sqrt{x-2}-\sqrt{x-3}(x≥3)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知参数方程$\left\{\begin{array}{l}{x=\frac{a(1-{t}^{2})}{1+{t}^{2}}}\\{y=\frac{2\sqrt{3}t}{1+{t}^{2}}}\end{array}\right.$(a∈R,t为参数)表示离心率为$\frac{1}{2}$的椭圆C,直线l经过C的右焦点F2,且与C交于M、N两点.
(1)求a的值;
(2)求$\overrightarrow{{F}_{2}M}$$•\overrightarrow{{F}_{2}N}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.双“十一”结束之后,某网站针对购物情况进行了调查,参与调查的人主要集中在[20,50]岁之间,若规定:购物600(含600元)以下者,称为“理智购物”,购物超过600元者被网友形象的称为“剁手党”,得到如下统计表:
分组编号年龄分组球迷所占比例
1[20,25)10000.5
2[25,30)18000.6
3[30,35)12000.5
4[35,40)a0.4
5[40,45)3000.2
6[45,50]2000.1
若参与调查的“理智购物”总人数为7720人.
(1)求a的值;
(2)从年龄在[20,35)的“剁手党”中按照年龄区间分层抽样的方法抽取20人;
①从这20人中随机抽取2人,求这2人恰好属于同一年龄区间的概率;
②从这20人中随机抽取2人,用ζ表示年龄在[20,25)之间的人数,求ξ的分布列及期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知二次函数f(x)=ax2+bx满足:①f(2)=0,②关于x的方程f(x)=x有两个相等的实数根.
(1)求函数f(x)的解析式;
(2)求函数f(x)在[0,3]上的值域.

查看答案和解析>>

同步练习册答案