分析 (Ⅰ)通过Sn+an+n=0与Sn-1+an-1+n-1=0作差可知2an=an-1-1,进而变形可构造首项、公比均为$\frac{1}{2}$的等比数列{an+1},进而计算可得结论;
(II)通过(Ⅰ)裂项可知$\frac{1}{{2}^{n}{a}_{n}{a}_{n+1}}$=2($\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$),进而并项相加即得结论.
解答 (Ⅰ)解:∵Sn+an+n=0,
∴n≥2时,Sn-1+an-1+n-1=0,
两式相减可得,2an=an-1-1,
变形得:2(an+1)=an-1+1,
∵S1+a1+1=2a1+1=0,即${a_1}=-\frac{1}{2}$,即${a_1}+1=\frac{1}{2}$,
∴数列{an+1}是以$\frac{1}{2}$为首项、$\frac{1}{2}$为公比的等比数列,
∴${a_n}+1={(\frac{1}{2})^n}$,∴${a_n}={(\frac{1}{2})^n}-1(n∈{N^*})$;
(II)证明:由(Ⅰ)知,$\frac{1}{{{2^n}{a_n}{a_{n+1}}}}=\frac{1}{{{2^n}(\frac{1}{2^n}-1)(\frac{1}{{{2^{n+1}}}}-1)}}=2(\frac{1}{{{2^n}-1}}-\frac{1}{{{2^{n+1}}-1}})$,
∴$\frac{1}{{2{a_1}{a_2}}}+\frac{1}{{{2^2}{a_2}{a_3}}}+…+\frac{1}{{{2^n}{a_n}{a_{n+1}}}}=-2(\frac{1}{{{2^1}-1}}-\frac{1}{{{2^2}-1}}+\frac{1}{{{2^2}-1}}$$-\frac{1}{{{2^3}-1}}+…+\frac{1}{{{2^n}-1}}-\frac{1}{{{2^{n+1}}-1}})=2(\frac{1}{{{2^1}-1}}-\frac{1}{{{2^{n+1}}-1}})=2(1-\frac{1}{{{2^{n+1}}-1}})<2$,
即$\frac{1}{{2{a_1}{a_2}}}+\frac{1}{{{2^2}{a_2}{a_3}}}+…+\frac{1}{{{2^n}{a_n}{a_{n+1}}}}<2$.
点评 本题考查数列的通项及前n项和,考查裂项相消法,构造等比数列是解决本题的关键,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分组编号 | 年龄分组 | 球迷 | 所占比例 |
| 1 | [20,25) | 1000 | 0.5 |
| 2 | [25,30) | 1800 | 0.6 |
| 3 | [30,35) | 1200 | 0.5 |
| 4 | [35,40) | a | 0.4 |
| 5 | [40,45) | 300 | 0.2 |
| 6 | [45,50] | 200 | 0.1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com