| 分组编号 | 年龄分组 | 球迷 | 所占比例 |
| 1 | [20,25) | 1000 | 0.5 |
| 2 | [25,30) | 1800 | 0.6 |
| 3 | [30,35) | 1200 | 0.5 |
| 4 | [35,40) | a | 0.4 |
| 5 | [40,45) | 300 | 0.2 |
| 6 | [45,50] | 200 | 0.1 |
分析 (1)由“理智购物”者总人数为7720人,结合题意列出方程,由此能求出a的值.
(2)①年龄在[20,35)的“剁手党”有4000人,则年龄在区间[20,25)的应该抽取5人,年龄在区间[25,30)的应该抽取9人,年龄在区间[30,35)的应该抽取6人,由此能求出从这20人中随机抽取2人,这2人属于同一年龄区间的概率.
②由题意可知ξ的取值可能为0,1,2.分别求出相应的概率,由此能求出ξ的分布列和E(ξ).
解答 解:(1)由“理智购物”者总人数为7720人,
可得:1000+1800×$\frac{1-0.6}{0.6}$+1200+a×$\frac{1-0.4}{0.4}$+300×$\frac{1-0.2}{0.2}$+200×$\frac{1-0.1}{0.1}$=7720,
解得a=880.…(4分)
(2)①年龄在[20,35)的“剁手党”共有1000+1800+1200=4000人,
则年龄在区间[20,25)的应该抽取5人,年龄在区间[25,30)的应该抽取9人,年龄在区间[30,35)的应该抽取6人.…(6分)
从这20人中随机抽取2人,这2人属于同一年龄区间的概率为:
P=$\frac{{C}_{5}^{2}+{C}_{9}^{2}+{C}_{6}^{2}}{{C}_{20}^{2}}$=$\frac{61}{190}$.…(8分)
②由题意可知ξ的取值可能为0,1,2.
P(ξ=0)=$\frac{{C}_{15}^{2}}{{C}_{20}^{2}}$=$\frac{21}{38}$,
P(ξ=1)=$\frac{{C}_{5}^{1}{C}_{15}^{1}}{{C}_{20}^{2}}$=$\frac{15}{38}$,
P(ξ=2)=$\frac{{C}_{5}^{2}}{{C}_{20}^{2}}$=$\frac{1}{19}$,
故ξ的分布列为:
| ξ | 0 | 1 | 2 |
| P | $\frac{21}{38}$ | $\frac{15}{38}$ | $\frac{1}{19}$ |
点评 本题考查实数值的求法,考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | ①和②均为真命题 | B. | ①和②均为假命题 | ||
| C. | ①为真命题,②为假命题 | D. | ①为假命题,②为真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=4x | B. | y=$\frac{1}{2}$x | C. | y=x | D. | y=$\frac{1}{4}$x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ex≥x+1 | B. | ln(x+2)-ln(x+1)$<\frac{1}{x+1}$ | ||
| C. | $\frac{2}{π}$x+cosx≥1+sinx | D. | cosx≥1-$\frac{1}{2}$x2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com