精英家教网 > 高中数学 > 题目详情
10.已知直线l上有三点A,B,P,若$\overrightarrow{AB}$=3$\overrightarrow{BP}$且$\overrightarrow{AP}$=$λ\overrightarrow{PB}$,求λ的值.

分析 根据向量加法的几何意义便可得到$\overrightarrow{AP}=\overrightarrow{AB}+\overrightarrow{BP}$,进行向量的数乘运算便可得到$\overrightarrow{AB}=-(λ+1)\overrightarrow{BP}$,从而有-(λ+1)=3,这便可解出λ的值.

解答 解:$\overrightarrow{AP}=\overrightarrow{AB}+\overrightarrow{BP}=λ\overrightarrow{PB}$;
∴$\overrightarrow{AB}=-(λ+1)\overrightarrow{BP}$;
又$\overrightarrow{AB}=3\overrightarrow{BP}$;
∴-(λ+1)=3;
∴λ=-4.

点评 考查向量加法及数乘的几何意义,以及向量的数乘运算,平面向量基本定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{6}}}{3}$,椭圆C上任意一点到椭圆两焦点的距离之和为6.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=x-2与椭圆C交于M,N两点,O是原点,求△OMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.数列{an}的通项公式an=(-1)n-1•(4n-3),则数列{an}的前n项和为 Sn=$\left\{\begin{array}{l}{-2n,n为偶数}\\{2n-1,n为奇数}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.公差不为零的等差数列{an}中,a7=2a5,则数列{an}中与4a5的值相等的项是(  )
A.a11B.a12C.a13D.a14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知200°的圆心角所对的圆弧长是50cm,求圆的半径(精确到0.1cm)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列积分:
(1)${∫}_{1}^{3}(|x-2|+\frac{1}{{x}^{2}})$dx;
(2)${∫}_{1}^{2}\frac{1}{x(x+1)}dx$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,D,E,F分别是等腰直角三角形ABC各边的中点,∠BAC=90°.
①写出图中与$\overrightarrow{DE}$,$\overrightarrow{FD}$长度相等的向量;
②分别写出图中与向量$\overrightarrow{DE}$,$\overrightarrow{FD}$共线的向量.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在60°的∠XAY的内部有一点P,点P到边AX的距离是PC=2,点P到边AY的距离是PB=11,则点P到点A的距离为14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$f(x)=\left\{\begin{array}{l}2-|x|,x≤2\\{({x-2})^2},x>2\end{array}\right.$,函数$g(x)=\frac{b}{2}-f(2-x)$,其中b∈R,若函数y=f(x)-g(x)恰有4个零点,则b的取值范围是(  )
A.$(\frac{7}{8},+∞)$B.$(\frac{7}{4},2)$C.$(\frac{7}{8},1)$D.$(\frac{7}{2},4)$

查看答案和解析>>

同步练习册答案