精英家教网 > 高中数学 > 题目详情
3.已知平面α⊥平面β,α∩β=l,在l上有两点AB,线段AC?α,线段BD?β,并且AC⊥l,BD⊥l,AB=6,AC=8,BD=24,求CD的长.

分析 由于本题中的二面角是直角,且两线段都与棱垂直,可根据题意作出相应的长方体,CD恰好是此长方体的体对角线,由长方体的性质求出其长度即可.

解答 解:如图,由于此题的二面角是直角,
且线段AC,BD分别在α,β内垂直于棱l,AB=6,AC=8,BD=24,
作出以线段AB,BD,AC为棱的长方体,CD即为长方体的对角线,
由长方体的性质知,CD=$\sqrt{{6}^{2}+{8}^{2}+2{4}^{2}}$=26.
故CD的长为:26.

点评 本题考查与二面角有关的线段长度计算问题,根据本题的条件选择作出长方体,利用长方体的性质求线段的长度,大大简化了计算,具体解题中要注意此类问题的合理转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知直线3x+ky+1=0与直线x-2y-2=0垂直,则k=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知点A、B为单位圆O上的两点,点P为单位圆0所在平面内的一点,且$\overrightarrow{OA}$与$\overrightarrow{OB}$不共线.
(1)在△0AB中,点P在AB上,且$\overrightarrow{AP}$=2$\overrightarrow{PB}$,若$\overrightarrow{AP}$=r$\overrightarrow{OB}$+s$\overrightarrow{OA}$,求r+s的值;
(2)如图,点P满足$\overrightarrow{OP}$=m$\overrightarrow{OA}$+$\overrightarrow{OB}$(m为常数),若四边形OABP为平行四边形,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知△ABC的三边a,b,c所对的角分别为A,B,C,且sinA:sinB:sinC=2:3:$\sqrt{7}$.
(1)求角C;
(2)若△ABC的面积为6$\sqrt{3}$,求$\frac{c}{sinC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在(x2-$\frac{1}{2x}$)6的展开式中,常数项等于$\frac{15}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四棱锥P-ABCD 中,△PAD 为等边三角形,底面ABCD为等腰梯形,满足AB∥CD,AD=DC=$\frac{1}{2}$AB=2,且平面PAD⊥平面ABCD.
(Ⅰ)证明:BD⊥平面PAD;
(Ⅱ)求点C到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,ABCD-A1B1C1D1是长方体,已知AA1=AC=2,AB=$\sqrt{2}$,O、O1分别是上下底面ABCD和A1B1C1D1的对角线的交点,E是BC的中点.
(1)求证:C1E∥平面ABO1
(2)求证:BD⊥平面ACO1
(3)求点A到平面BCO1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.直三棱柱ABC-A1B1C1的底面是等腰直角三角形,AB=AC=2,四棱锥C-ABB1A1的体积等于4.
(1)求AA1的值;
(2)求C1到平面A1B1C的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线l的参数方程为:$\left\{\begin{array}{l}{x=cos90°+tcos60°}\\{y=cos45°+tcos30°}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C极坐标方程为:ρ=-2cos(θ+$\frac{3π}{4}$),设直线l与曲线C的交点为A,B两点.
(1)将直线l化成直角坐标方程,写成斜截式,并求出直线l的倾斜角;
(2)若曲线C上存在异于A,B的点C,使得△ABC的面积最大,求出面积最大值.

查看答案和解析>>

同步练习册答案