分析 (1)由四棱锥的体积${V}_{C-AB{B}_{1}{A}_{1}}$=$\frac{1}{3}×$AB×AA1×AC,代入已知即可解得AA1的值.
(2)设C1到平面A1B1C的距离为h,先证明B1A1⊥CA1,由已知及勾股定理可求A1C=$\sqrt{13}$,由${V}_{{C}_{1}-{A}_{1}{B}_{1}C}$=${V}_{C-{A}_{1}{B}_{1}{C}_{1}}$,利用三棱锥体积公式可得:$\frac{1}{3}×$$\frac{1}{2}$×2×$\sqrt{13}$×h=$\frac{1}{3}×\frac{1}{2}×$2×2×3,即可解得C1到平面A1B1C的距离为$\frac{6\sqrt{13}}{13}$.
解答 解:(1)∵${V}_{C-AB{B}_{1}{A}_{1}}$=$\frac{1}{3}×$AB×AA1×AC=$\frac{1}{3}×2×2×$AA1=4,
∴AA1=3.
(2)∵B1A1⊥C1A1,B1A1⊥A1A,A1A∩B1A1=A1,
∴B1A1⊥平面A1C1C,A1C?平面A1C1C,
∴B1A1⊥CA1,
∵直三棱柱ABC-A1B1C1的底面是等腰直角三角形,AB=AC=2,设C1到平面A1B1C的距离为h,
∴A1C=$\sqrt{{4}^{2}+{3}^{2}}$=$\sqrt{13}$,
∵${V}_{{C}_{1}-{A}_{1}{B}_{1}C}$=${V}_{C-{A}_{1}{B}_{1}{C}_{1}}$,
${V}_{{C}_{1}-{A}_{1}{B}_{1}C}$=$\frac{1}{3}×{A}_{1}{B}_{1}×{A}_{1}C×$h=$\frac{1}{3}×$$\frac{1}{2}$×2×$\sqrt{13}$×h,
${V}_{C-{A}_{1}{B}_{1}{C}_{1}}$=$\frac{1}{3}×$$\frac{1}{2}$×A1B1×C1A1×CC1=$\frac{1}{3}×\frac{1}{2}×$2×2×3,
∴$\frac{1}{3}×$$\frac{1}{2}$×2×$\sqrt{13}$×h=$\frac{1}{3}×\frac{1}{2}×$2×2×3,解得:h=$\frac{6\sqrt{13}}{13}$.
故C1到平面A1B1C的距离$\frac{6\sqrt{13}}{13}$.
点评 本题主要考查了直线与直线垂直的判定,考查了三棱锥,四棱锥体积的求法,考查了空间想象能力和推理论证能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{7}}}{7}$ | B. | $\frac{{2\sqrt{7}}}{7}$ | C. | $\frac{{\sqrt{21}}}{7}$ | D. | $\frac{{2\sqrt{21}}}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 90° | B. | 105° | C. | 120° | D. | 135° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com