精英家教网 > 高中数学 > 题目详情
1.已知三棱锥O-ABC的顶点A,B,C都在半径为2的球面上,O是球心,∠AOB=60°,当△AOC和△BOC的面积之和最大时,则O到面ABC的距离为(  )
A.$\frac{{\sqrt{7}}}{7}$B.$\frac{{2\sqrt{7}}}{7}$C.$\frac{{\sqrt{21}}}{7}$D.$\frac{{2\sqrt{21}}}{7}$

分析 设球O的半径为R,当∠AOC=∠BOC=90°时,△AOC和△BOC的面积之和最大,由此能求出O到面ABC的距离.

解答 解:设球O的半径为R,
∵S△AOC+S△BOC=$\frac{1}{2}{R}^{2}$(sin∠AOC+sin∠BOC),-
∴当∠AOC=∠BOC=90°时,△AOC和△BOC的面积之和最大,
此时OA⊥OC,OB⊥OC,
∴OC⊥平面AOB,
∴VO-ABC=VC-OAB=$\frac{1}{3}OC×\frac{1}{2}OA•OBsin∠AOB$=$\frac{1}{6}{R}^{3}sin60°$=$\frac{2\sqrt{3}}{3}$,
∵AC=BC=$\sqrt{4+4}=2\sqrt{2}$,AB=2,∴${S}_{△ABC}=\frac{1}{2}×2×\sqrt{(2\sqrt{2})^{2}-{1}^{2}}$=$\sqrt{7}$,
设O到面ABC的距离为h,则VO-ABC=$\frac{1}{3}×{S}_{△ABC}×h=\frac{2\sqrt{3}}{3}$,
解得h=$\frac{2\sqrt{21}}{7}$.
∴O到面ABC的距离为$\frac{2\sqrt{21}}{7}$.
故选:D.

点评 本题考查点到平面的距离的求法,是中档题,解题时要认真审题,注意等体积法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知△ABC的三边a,b,c所对的角分别为A,B,C,且sinA:sinB:sinC=2:3:$\sqrt{7}$.
(1)求角C;
(2)若△ABC的面积为6$\sqrt{3}$,求$\frac{c}{sinC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.直三棱柱ABC-A1B1C1的底面是等腰直角三角形,AB=AC=2,四棱锥C-ABB1A1的体积等于4.
(1)求AA1的值;
(2)求C1到平面A1B1C的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知$|{\begin{array}{l}{sinα}&{cosα}\\ 2&1\end{array}}|=0$,则sin2α=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(1,$\frac{\sqrt{2}}{2}$),且离心率为$\frac{\sqrt{2}}{2}$,过点P的动直线l与椭圆相交于A,B两点.
(1)求椭圆E的方程;
(2)若椭圆E的右焦点是P,其右准线与x轴交于点Q,直线AQ的斜率为k1,直线BQ的斜率为k2,求证:k1+k2=0;
(3)设点P(t,0)是椭圆E的长轴上某一点(不为长轴顶点及坐标原点),是否存在与点P不同的定点Q,使得$\frac{QA}{QB}$=$\frac{PA}{PB}$恒成立?若存在,求出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2,PD=AD=1,PD⊥底面ABCD.
(1)证明:PA⊥BD;
(2)求D到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线l的参数方程为:$\left\{\begin{array}{l}{x=cos90°+tcos60°}\\{y=cos45°+tcos30°}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C极坐标方程为:ρ=-2cos(θ+$\frac{3π}{4}$),设直线l与曲线C的交点为A,B两点.
(1)将直线l化成直角坐标方程,写成斜截式,并求出直线l的倾斜角;
(2)若曲线C上存在异于A,B的点C,使得△ABC的面积最大,求出面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率是$\frac{\sqrt{2}}{2}$,直线y=$\frac{1}{2}$被椭圆E截得的线段长为$\sqrt{6}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若椭圆E两个不同的点A,B关于直线y=mx+$\frac{1}{2}$对称,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.用秦九韶算法求多项式f(x)=4x4+3x3+2x2+x+7的值,则f(2)的值为(  )
A.98B.105C.112D.119

查看答案和解析>>

同步练习册答案